Fix arg merging of sknet, old seresnet. Fix #2470
parent
e44f14d7d2
commit
681be882e8
|
@ -404,62 +404,62 @@ default_cfgs = generate_default_cfgs({
|
|||
@register_model
|
||||
def legacy_seresnet18(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnet18', pretrained, **model_args)
|
||||
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16)
|
||||
return _create_senet('legacy_seresnet18', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnet34(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnet34', pretrained, **model_args)
|
||||
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16)
|
||||
return _create_senet('legacy_seresnet34', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnet50(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnet50', pretrained, **model_args)
|
||||
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16)
|
||||
return _create_senet('legacy_seresnet50', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnet101(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnet101', pretrained, **model_args)
|
||||
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16)
|
||||
return _create_senet('legacy_seresnet101', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnet152(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnet152', pretrained, **model_args)
|
||||
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16)
|
||||
return _create_senet('legacy_seresnet152', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_senet154(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16,
|
||||
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs)
|
||||
return _create_senet('legacy_senet154', pretrained, **model_args)
|
||||
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True)
|
||||
return _create_senet('legacy_senet154', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnext26_32x4d(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnext26_32x4d', pretrained, **model_args)
|
||||
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16)
|
||||
return _create_senet('legacy_seresnext26_32x4d', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnext50_32x4d(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnext50_32x4d', pretrained, **model_args)
|
||||
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16)
|
||||
return _create_senet('legacy_seresnext50_32x4d', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
def legacy_seresnext101_32x4d(pretrained=False, **kwargs) -> SENet:
|
||||
model_args = dict(
|
||||
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs)
|
||||
return _create_senet('legacy_seresnext101_32x4d', pretrained, **model_args)
|
||||
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16)
|
||||
return _create_senet('legacy_seresnext101_32x4d', pretrained, **dict(model_args, **kwargs))
|
||||
|
|
|
@ -181,8 +181,8 @@ def skresnet18(pretrained=False, **kwargs) -> ResNet:
|
|||
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
|
||||
model_args = dict(
|
||||
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs),
|
||||
zero_init_last=False, **kwargs)
|
||||
return _create_skresnet('skresnet18', pretrained, **model_args)
|
||||
zero_init_last=False)
|
||||
return _create_skresnet('skresnet18', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
|
@ -195,8 +195,8 @@ def skresnet34(pretrained=False, **kwargs) -> ResNet:
|
|||
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
|
||||
model_args = dict(
|
||||
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
||||
zero_init_last=False, **kwargs)
|
||||
return _create_skresnet('skresnet34', pretrained, **model_args)
|
||||
zero_init_last=False)
|
||||
return _create_skresnet('skresnet34', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
|
@ -209,8 +209,8 @@ def skresnet50(pretrained=False, **kwargs) -> ResNet:
|
|||
sk_kwargs = dict(split_input=True)
|
||||
model_args = dict(
|
||||
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
||||
zero_init_last=False, **kwargs)
|
||||
return _create_skresnet('skresnet50', pretrained, **model_args)
|
||||
zero_init_last=False)
|
||||
return _create_skresnet('skresnet50', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
|
@ -223,8 +223,8 @@ def skresnet50d(pretrained=False, **kwargs) -> ResNet:
|
|||
sk_kwargs = dict(split_input=True)
|
||||
model_args = dict(
|
||||
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
||||
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
|
||||
return _create_skresnet('skresnet50d', pretrained, **model_args)
|
||||
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False)
|
||||
return _create_skresnet('skresnet50d', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
||||
@register_model
|
||||
|
@ -235,6 +235,6 @@ def skresnext50_32x4d(pretrained=False, **kwargs) -> ResNet:
|
|||
sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False)
|
||||
model_args = dict(
|
||||
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
|
||||
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
|
||||
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args)
|
||||
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False)
|
||||
return _create_skresnet('skresnext50_32x4d', pretrained, **dict(model_args, **kwargs))
|
||||
|
||||
|
|
Loading…
Reference in New Issue