mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Merge pull request #2480 from brianhou0208/tnt
Update TNT-(S/B) model weights and add feature extraction support
This commit is contained in:
commit
6b302f27a3
@ -53,7 +53,7 @@ FEAT_INTER_FILTERS = [
|
||||
'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos',
|
||||
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
|
||||
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet',
|
||||
'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2', 'aimv2*',
|
||||
'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2', 'aimv2*', 'tnt',
|
||||
'tiny_vit', 'vovnet', 'tresnet', 'rexnet', 'resnetv2', 'repghost', 'repvit', 'pvt_v2', 'nextvit', 'nest',
|
||||
'mambaout', 'inception_next', 'inception_v4', 'hgnet', 'gcvit', 'focalnet', 'efficientformer_v2', 'edgenext',
|
||||
'davit', 'rdnet', 'convnext', 'pit'
|
||||
|
@ -5,48 +5,30 @@ A PyTorch implement of TNT as described in
|
||||
|
||||
The official mindspore code is released and available at
|
||||
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT
|
||||
|
||||
The official pytorch code is released and available at
|
||||
https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch
|
||||
"""
|
||||
import math
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
||||
from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple, resample_abs_pos_embed
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint
|
||||
from ._registry import register_model
|
||||
|
||||
from ._registry import generate_default_cfgs, register_model
|
||||
|
||||
__all__ = ['TNT'] # model_registry will add each entrypoint fn to this
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'pixel_embed.proj', 'classifier': 'head',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'tnt_s_patch16_224': _cfg(
|
||||
url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||
),
|
||||
'tnt_b_patch16_224': _cfg(
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
""" Multi-Head Attention
|
||||
"""
|
||||
|
||||
def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
@ -64,7 +46,7 @@ class Attention(nn.Module):
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
q, k = qk.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||
q, k = qk.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||
v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
@ -80,6 +62,7 @@ class Attention(nn.Module):
|
||||
class Block(nn.Module):
|
||||
""" TNT Block
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
@ -94,6 +77,7 @@ class Block(nn.Module):
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
legacy=False,
|
||||
):
|
||||
super().__init__()
|
||||
# Inner transformer
|
||||
@ -106,7 +90,7 @@ class Block(nn.Module):
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=proj_drop,
|
||||
)
|
||||
|
||||
|
||||
self.norm_mlp_in = norm_layer(dim)
|
||||
self.mlp_in = Mlp(
|
||||
in_features=dim,
|
||||
@ -115,9 +99,15 @@ class Block(nn.Module):
|
||||
act_layer=act_layer,
|
||||
drop=proj_drop,
|
||||
)
|
||||
|
||||
self.norm1_proj = norm_layer(dim)
|
||||
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True)
|
||||
self.legacy = legacy
|
||||
if self.legacy:
|
||||
self.norm1_proj = norm_layer(dim)
|
||||
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True)
|
||||
self.norm2_proj = None
|
||||
else:
|
||||
self.norm1_proj = norm_layer(dim * num_pixel)
|
||||
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=False)
|
||||
self.norm2_proj = norm_layer(dim_out)
|
||||
|
||||
# Outer transformer
|
||||
self.norm_out = norm_layer(dim_out)
|
||||
@ -130,7 +120,7 @@ class Block(nn.Module):
|
||||
proj_drop=proj_drop,
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
|
||||
self.norm_mlp = norm_layer(dim_out)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim_out,
|
||||
@ -146,9 +136,16 @@ class Block(nn.Module):
|
||||
pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
|
||||
# outer
|
||||
B, N, C = patch_embed.size()
|
||||
patch_embed = torch.cat(
|
||||
[patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))],
|
||||
dim=1)
|
||||
if self.norm2_proj is None:
|
||||
patch_embed = torch.cat([
|
||||
patch_embed[:, 0:1],
|
||||
patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)),
|
||||
], dim=1)
|
||||
else:
|
||||
patch_embed = torch.cat([
|
||||
patch_embed[:, 0:1],
|
||||
patch_embed[:, 1:] + self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, N - 1, -1)))),
|
||||
], dim=1)
|
||||
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
|
||||
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
|
||||
return pixel_embed, patch_embed
|
||||
@ -157,7 +154,16 @@ class Block(nn.Module):
|
||||
class PixelEmbed(nn.Module):
|
||||
""" Image to Pixel Embedding
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
in_dim=48,
|
||||
stride=4,
|
||||
legacy=False,
|
||||
):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
@ -165,23 +171,45 @@ class PixelEmbed(nn.Module):
|
||||
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
||||
num_patches = (self.grid_size[0]) * (self.grid_size[1])
|
||||
self.img_size = img_size
|
||||
self.patch_size = patch_size
|
||||
self.legacy = legacy
|
||||
self.num_patches = num_patches
|
||||
self.in_dim = in_dim
|
||||
new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
|
||||
self.new_patch_size = new_patch_size
|
||||
|
||||
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
|
||||
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)
|
||||
if self.legacy:
|
||||
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)
|
||||
else:
|
||||
self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
def forward(self, x, pixel_pos):
|
||||
def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]:
|
||||
if as_scalar:
|
||||
return max(self.patch_size)
|
||||
else:
|
||||
return self.patch_size
|
||||
|
||||
def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]:
|
||||
return img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]
|
||||
|
||||
def forward(self, x: torch.Tensor, pixel_pos: torch.Tensor) -> torch.Tensor:
|
||||
B, C, H, W = x.shape
|
||||
_assert(H == self.img_size[0],
|
||||
_assert(
|
||||
H == self.img_size[0],
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
||||
_assert(W == self.img_size[1],
|
||||
_assert(
|
||||
W == self.img_size[1],
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
||||
x = self.proj(x)
|
||||
x = self.unfold(x)
|
||||
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
|
||||
if self.legacy:
|
||||
x = self.proj(x)
|
||||
x = self.unfold(x)
|
||||
x = x.transpose(1, 2).reshape(
|
||||
B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
|
||||
else:
|
||||
x = self.unfold(x)
|
||||
x = x.transpose(1, 2).reshape(B * self.num_patches, C, self.patch_size[0], self.patch_size[1])
|
||||
x = self.proj(x)
|
||||
x = x + pixel_pos
|
||||
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
|
||||
return x
|
||||
@ -190,6 +218,7 @@ class PixelEmbed(nn.Module):
|
||||
class TNT(nn.Module):
|
||||
""" Transformer in Transformer - https://arxiv.org/abs/2103.00112
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
@ -211,12 +240,14 @@ class TNT(nn.Module):
|
||||
drop_path_rate=0.,
|
||||
norm_layer=nn.LayerNorm,
|
||||
first_stride=4,
|
||||
legacy=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert global_pool in ('', 'token', 'avg')
|
||||
self.num_classes = num_classes
|
||||
self.global_pool = global_pool
|
||||
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models
|
||||
self.num_prefix_tokens = 1
|
||||
self.grad_checkpointing = False
|
||||
|
||||
self.pixel_embed = PixelEmbed(
|
||||
@ -225,12 +256,14 @@ class TNT(nn.Module):
|
||||
in_chans=in_chans,
|
||||
in_dim=inner_dim,
|
||||
stride=first_stride,
|
||||
legacy=legacy,
|
||||
)
|
||||
num_patches = self.pixel_embed.num_patches
|
||||
r = self.pixel_embed.feat_ratio() if hasattr(self.pixel_embed, 'feat_ratio') else patch_size
|
||||
self.num_patches = num_patches
|
||||
new_patch_size = self.pixel_embed.new_patch_size
|
||||
num_pixel = new_patch_size[0] * new_patch_size[1]
|
||||
|
||||
|
||||
self.norm1_proj = norm_layer(num_pixel * inner_dim)
|
||||
self.proj = nn.Linear(num_pixel * inner_dim, embed_dim)
|
||||
self.norm2_proj = norm_layer(embed_dim)
|
||||
@ -255,10 +288,13 @@ class TNT(nn.Module):
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer,
|
||||
legacy=legacy,
|
||||
))
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
self.norm = norm_layer(embed_dim)
|
||||
self.feature_info = [
|
||||
dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)]
|
||||
|
||||
self.norm = norm_layer(embed_dim)
|
||||
self.head_drop = nn.Dropout(drop_rate)
|
||||
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
@ -306,20 +342,105 @@ class TNT(nn.Module):
|
||||
self.global_pool = global_pool
|
||||
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
return_prefix_tokens: bool = False,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if an int, if is a sequence, select by matching indices
|
||||
return_prefix_tokens: Return both prefix and spatial intermediate tokens
|
||||
norm: Apply norm layer to all intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
|
||||
reshape = output_fmt == 'NCHW'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
||||
|
||||
# forward pass
|
||||
B, _, height, width = x.shape
|
||||
|
||||
pixel_embed = self.pixel_embed(x, self.pixel_pos)
|
||||
|
||||
|
||||
patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1))))
|
||||
patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1)
|
||||
patch_embed = patch_embed + self.patch_pos
|
||||
patch_embed = self.pos_drop(patch_embed)
|
||||
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
for blk in self.blocks:
|
||||
pixel_embed, patch_embed = checkpoint(blk, pixel_embed, patch_embed)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
blocks = self.blocks
|
||||
else:
|
||||
for blk in self.blocks:
|
||||
blocks = self.blocks[:max_index + 1]
|
||||
|
||||
for i, blk in enumerate(blocks):
|
||||
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
|
||||
if i in take_indices:
|
||||
# normalize intermediates with final norm layer if enabled
|
||||
intermediates.append(self.norm(patch_embed) if norm else patch_embed)
|
||||
|
||||
# process intermediates
|
||||
if self.num_prefix_tokens:
|
||||
# split prefix (e.g. class, distill) and spatial feature tokens
|
||||
prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates]
|
||||
intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates]
|
||||
|
||||
if reshape:
|
||||
# reshape to BCHW output format
|
||||
H, W = self.pixel_embed.dynamic_feat_size((height, width))
|
||||
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
|
||||
if not torch.jit.is_scripting() and return_prefix_tokens:
|
||||
# return_prefix not support in torchscript due to poor type handling
|
||||
intermediates = list(zip(intermediates, prefix_tokens))
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
patch_embed = self.norm(patch_embed)
|
||||
|
||||
return patch_embed, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
||||
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
pixel_embed = self.pixel_embed(x, self.pixel_pos)
|
||||
|
||||
patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1))))
|
||||
patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1)
|
||||
patch_embed = patch_embed + self.patch_pos
|
||||
patch_embed = self.pos_drop(patch_embed)
|
||||
|
||||
for blk in self.blocks:
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
pixel_embed, patch_embed = checkpoint(blk, pixel_embed, patch_embed)
|
||||
else:
|
||||
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
|
||||
|
||||
patch_embed = self.norm(patch_embed)
|
||||
@ -327,7 +448,7 @@ class TNT(nn.Module):
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
if self.global_pool:
|
||||
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
||||
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
||||
x = self.head_drop(x)
|
||||
return x if pre_logits else self.head(x)
|
||||
|
||||
@ -337,28 +458,92 @@ class TNT(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
||||
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
||||
'first_conv': 'pixel_embed.proj', 'classifier': 'head',
|
||||
'paper_ids': 'arXiv:2103.00112',
|
||||
'paper_name': 'Transformer in Transformer',
|
||||
'origin_url': 'https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = generate_default_cfgs({
|
||||
'tnt_s_legacy_patch16_224.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
|
||||
),
|
||||
'tnt_s_patch16_224.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_s_81.5.pth.tar',
|
||||
),
|
||||
'tnt_b_patch16_224.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_b_82.9.pth.tar',
|
||||
),
|
||||
})
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model):
|
||||
state_dict.pop('outer_tokens', None)
|
||||
if 'patch_pos' in state_dict:
|
||||
out_dict = state_dict
|
||||
else:
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
k = k.replace('outer_pos', 'patch_pos')
|
||||
k = k.replace('inner_pos', 'pixel_pos')
|
||||
k = k.replace('patch_embed', 'pixel_embed')
|
||||
k = k.replace('proj_norm1', 'norm1_proj')
|
||||
k = k.replace('proj_norm2', 'norm2_proj')
|
||||
k = k.replace('inner_norm1', 'norm_in')
|
||||
k = k.replace('inner_attn', 'attn_in')
|
||||
k = k.replace('inner_norm2', 'norm_mlp_in')
|
||||
k = k.replace('inner_mlp', 'mlp_in')
|
||||
k = k.replace('outer_norm1', 'norm_out')
|
||||
k = k.replace('outer_attn', 'attn_out')
|
||||
k = k.replace('outer_norm2', 'norm_mlp')
|
||||
k = k.replace('outer_mlp', 'mlp')
|
||||
if k == 'pixel_pos' and model.pixel_embed.legacy == False:
|
||||
B, N, C = v.shape
|
||||
H = W = int(N ** 0.5)
|
||||
assert H * W == N
|
||||
v = v.permute(0, 2, 1).reshape(B, C, H, W)
|
||||
out_dict[k] = v
|
||||
|
||||
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
||||
if state_dict['patch_pos'].shape != model.patch_pos.shape:
|
||||
state_dict['patch_pos'] = resample_abs_pos_embed(
|
||||
state_dict['patch_pos'],
|
||||
if out_dict['patch_pos'].shape != model.patch_pos.shape:
|
||||
out_dict['patch_pos'] = resample_abs_pos_embed(
|
||||
out_dict['patch_pos'],
|
||||
new_size=model.pixel_embed.grid_size,
|
||||
num_prefix_tokens=1,
|
||||
)
|
||||
return state_dict
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_tnt(variant, pretrained=False, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
||||
|
||||
out_indices = kwargs.pop('out_indices', 3)
|
||||
model = build_model_with_cfg(
|
||||
TNT, variant, pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def tnt_s_legacy_patch16_224(pretrained=False, **kwargs) -> TNT:
|
||||
model_cfg = dict(
|
||||
patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6,
|
||||
qkv_bias=False, legacy=True)
|
||||
model = _create_tnt('tnt_s_legacy_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT:
|
||||
model_cfg = dict(
|
||||
|
Loading…
x
Reference in New Issue
Block a user