mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add convnext_nano weights, 80.8 @ 224, 81.5 @ 288
This commit is contained in:
parent
4042a94f8f
commit
6f103a442b
@ -42,11 +42,15 @@ default_cfgs = dict(
|
||||
convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"),
|
||||
convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"),
|
||||
|
||||
# timm specific variants
|
||||
convnext_nano=_cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth',
|
||||
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
||||
convnext_nano_hnf=_cfg(url=''),
|
||||
convnext_nano_ols=_cfg(url=''),
|
||||
convnext_tiny_hnf=_cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth',
|
||||
crop_pct=0.95),
|
||||
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
||||
|
||||
convnext_tiny_in22ft1k=_cfg(
|
||||
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth'),
|
||||
@ -410,8 +414,18 @@ def _create_convnext(variant, pretrained=False, **kwargs):
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def convnext_nano(pretrained=False, **kwargs):
|
||||
# timm nano variant with standard stem and head
|
||||
model_args = dict(
|
||||
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, **kwargs)
|
||||
model = _create_convnext('convnext_nano', pretrained=pretrained, **model_args)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def convnext_nano_hnf(pretrained=False, **kwargs):
|
||||
# experimental nano variant with normalization before pooling in head (head norm first)
|
||||
model_args = dict(
|
||||
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), head_norm_first=True, conv_mlp=True, **kwargs)
|
||||
model = _create_convnext('convnext_nano_hnf', pretrained=pretrained, **model_args)
|
||||
@ -420,23 +434,17 @@ def convnext_nano_hnf(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def convnext_nano_ols(pretrained=False, **kwargs):
|
||||
# experimental nano variant with overlapping conv stem
|
||||
model_args = dict(
|
||||
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), head_norm_first=True, conv_mlp=True,
|
||||
conv_bias=False, stem_type='overlap', stem_kernel_size=9, **kwargs)
|
||||
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True,
|
||||
stem_type='overlap', stem_kernel_size=9, **kwargs)
|
||||
model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **model_args)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def convnext_tiny_hnf(pretrained=False, **kwargs):
|
||||
model_args = dict(
|
||||
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True, **kwargs)
|
||||
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def convnext_tiny_hnfd(pretrained=False, **kwargs):
|
||||
# experimental tiny variant with norm before pooling in head (head norm first)
|
||||
model_args = dict(
|
||||
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True, **kwargs)
|
||||
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
|
||||
|
Loading…
x
Reference in New Issue
Block a user