mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Updated tnt model weights on hub, add back legacy model in case bwd compat
This commit is contained in:
parent
69b1fbcdc1
commit
74ad32a67e
@ -22,13 +22,13 @@ from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint
|
||||
from ._registry import generate_default_cfgs, register_model
|
||||
|
||||
|
||||
__all__ = ['TNT'] # model_registry will add each entrypoint fn to this
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
""" Multi-Head Attention
|
||||
"""
|
||||
|
||||
def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
@ -62,6 +62,7 @@ class Attention(nn.Module):
|
||||
class Block(nn.Module):
|
||||
""" TNT Block
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
@ -136,13 +137,13 @@ class Block(nn.Module):
|
||||
B, N, C = patch_embed.size()
|
||||
if self.legacy:
|
||||
patch_embed = torch.cat([
|
||||
patch_embed[:, 0:1], patch_embed[:, 1:] + \
|
||||
self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)),
|
||||
patch_embed[:, 0:1],
|
||||
patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)),
|
||||
], dim=1)
|
||||
else:
|
||||
patch_embed = torch.cat([
|
||||
patch_embed[:, 0:1], patch_embed[:, 1:] + \
|
||||
self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, N - 1, -1)))),
|
||||
patch_embed[:, 0:1],
|
||||
patch_embed[:, 1:] + self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, N - 1, -1)))),
|
||||
], dim=1)
|
||||
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
|
||||
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
|
||||
@ -152,7 +153,16 @@ class Block(nn.Module):
|
||||
class PixelEmbed(nn.Module):
|
||||
""" Image to Pixel Embedding
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4, legacy=False):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
in_dim=48,
|
||||
stride=4,
|
||||
legacy=False,
|
||||
):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
@ -184,14 +194,17 @@ class PixelEmbed(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor, pixel_pos: torch.Tensor) -> torch.Tensor:
|
||||
B, C, H, W = x.shape
|
||||
_assert(H == self.img_size[0],
|
||||
_assert(
|
||||
H == self.img_size[0],
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
||||
_assert(W == self.img_size[1],
|
||||
_assert(
|
||||
W == self.img_size[1],
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
||||
if self.legacy:
|
||||
x = self.proj(x)
|
||||
x = self.unfold(x)
|
||||
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
|
||||
x = x.transpose(1, 2).reshape(
|
||||
B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
|
||||
else:
|
||||
x = self.unfold(x)
|
||||
x = x.transpose(1, 2).reshape(B * self.num_patches, C, self.patch_size[0], self.patch_size[1])
|
||||
@ -204,6 +217,7 @@ class PixelEmbed(nn.Module):
|
||||
class TNT(nn.Module):
|
||||
""" Transformer in Transformer - https://arxiv.org/abs/2103.00112
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
@ -458,21 +472,26 @@ def _cfg(url='', **kwargs):
|
||||
|
||||
|
||||
default_cfgs = generate_default_cfgs({
|
||||
'tnt_s_legacy_patch16_224.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
|
||||
),
|
||||
'tnt_s_patch16_224.in1k': _cfg(
|
||||
# hf_hub_id='timm/',
|
||||
# url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
|
||||
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_s_81.5.pth.tar',
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_s_81.5.pth.tar',
|
||||
),
|
||||
'tnt_b_patch16_224.in1k': _cfg(
|
||||
# hf_hub_id='timm/',
|
||||
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_b_82.9.pth.tar',
|
||||
hf_hub_id='timm/',
|
||||
#url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_b_82.9.pth.tar',
|
||||
),
|
||||
})
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model):
|
||||
state_dict.pop('outer_tokens', None)
|
||||
|
||||
if 'patch_pos' in state_dict:
|
||||
out_dict = state_dict
|
||||
else:
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
k = k.replace('outer_pos', 'patch_pos')
|
||||
@ -515,6 +534,15 @@ def _create_tnt(variant, pretrained=False, **kwargs):
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def tnt_s_legacy_patch16_224(pretrained=False, **kwargs) -> TNT:
|
||||
model_cfg = dict(
|
||||
patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6,
|
||||
qkv_bias=False, legacy=True)
|
||||
model = _create_tnt('tnt_s_legacy_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT:
|
||||
model_cfg = dict(
|
||||
|
Loading…
x
Reference in New Issue
Block a user