mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Clean up no_grad for trunc normal weight inits
This commit is contained in:
parent
48e1df8b37
commit
769ab4b98a
@ -5,7 +5,7 @@ import warnings
|
|||||||
from torch.nn.init import _calculate_fan_in_and_fan_out
|
from torch.nn.init import _calculate_fan_in_and_fan_out
|
||||||
|
|
||||||
|
|
||||||
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
def _trunc_normal_(tensor, mean, std, a, b):
|
||||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||||
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||||||
def norm_cdf(x):
|
def norm_cdf(x):
|
||||||
@ -17,28 +17,27 @@ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
|||||||
"The distribution of values may be incorrect.",
|
"The distribution of values may be incorrect.",
|
||||||
stacklevel=2)
|
stacklevel=2)
|
||||||
|
|
||||||
with torch.no_grad():
|
# Values are generated by using a truncated uniform distribution and
|
||||||
# Values are generated by using a truncated uniform distribution and
|
# then using the inverse CDF for the normal distribution.
|
||||||
# then using the inverse CDF for the normal distribution.
|
# Get upper and lower cdf values
|
||||||
# Get upper and lower cdf values
|
l = norm_cdf((a - mean) / std)
|
||||||
l = norm_cdf((a - mean) / std)
|
u = norm_cdf((b - mean) / std)
|
||||||
u = norm_cdf((b - mean) / std)
|
|
||||||
|
|
||||||
# Uniformly fill tensor with values from [l, u], then translate to
|
# Uniformly fill tensor with values from [l, u], then translate to
|
||||||
# [2l-1, 2u-1].
|
# [2l-1, 2u-1].
|
||||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||||
|
|
||||||
# Use inverse cdf transform for normal distribution to get truncated
|
# Use inverse cdf transform for normal distribution to get truncated
|
||||||
# standard normal
|
# standard normal
|
||||||
tensor.erfinv_()
|
tensor.erfinv_()
|
||||||
|
|
||||||
# Transform to proper mean, std
|
# Transform to proper mean, std
|
||||||
tensor.mul_(std * math.sqrt(2.))
|
tensor.mul_(std * math.sqrt(2.))
|
||||||
tensor.add_(mean)
|
tensor.add_(mean)
|
||||||
|
|
||||||
# Clamp to ensure it's in the proper range
|
# Clamp to ensure it's in the proper range
|
||||||
tensor.clamp_(min=a, max=b)
|
tensor.clamp_(min=a, max=b)
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||||
@ -64,7 +63,8 @@ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|||||||
>>> w = torch.empty(3, 5)
|
>>> w = torch.empty(3, 5)
|
||||||
>>> nn.init.trunc_normal_(w)
|
>>> nn.init.trunc_normal_(w)
|
||||||
"""
|
"""
|
||||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
with torch.no_grad():
|
||||||
|
return _trunc_normal_(tensor, mean, std, a, b)
|
||||||
|
|
||||||
|
|
||||||
def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
|
def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||||
@ -90,8 +90,8 @@ def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
|
|||||||
>>> w = torch.empty(3, 5)
|
>>> w = torch.empty(3, 5)
|
||||||
>>> nn.init.trunc_normal_(w)
|
>>> nn.init.trunc_normal_(w)
|
||||||
"""
|
"""
|
||||||
_no_grad_trunc_normal_(tensor, 0, 1.0, a, b)
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
_trunc_normal_(tensor, 0, 1.0, a, b)
|
||||||
tensor.mul_(std).add_(mean)
|
tensor.mul_(std).add_(mean)
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
@ -111,10 +111,12 @@ def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
|||||||
# constant is stddev of standard normal truncated to (-2, 2)
|
# constant is stddev of standard normal truncated to (-2, 2)
|
||||||
trunc_normal_tf_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
||||||
elif distribution == "normal":
|
elif distribution == "normal":
|
||||||
tensor.normal_(std=math.sqrt(variance))
|
with torch.no_grad():
|
||||||
|
tensor.normal_(std=math.sqrt(variance))
|
||||||
elif distribution == "uniform":
|
elif distribution == "uniform":
|
||||||
bound = math.sqrt(3 * variance)
|
bound = math.sqrt(3 * variance)
|
||||||
tensor.uniform_(-bound, bound)
|
with torch.no_grad():
|
||||||
|
tensor.uniform_(-bound, bound)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"invalid distribution {distribution}")
|
raise ValueError(f"invalid distribution {distribution}")
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user