Change args for RandomErasing so only one required for pixel/color mode
parent
76539d905e
commit
780c0a96a4
|
@ -18,7 +18,7 @@ class PrefetchLoader:
|
|||
def __init__(self,
|
||||
loader,
|
||||
rand_erase_prob=0.,
|
||||
rand_erase_pp=False,
|
||||
rand_erase_mode='const',
|
||||
mean=IMAGENET_DEFAULT_MEAN,
|
||||
std=IMAGENET_DEFAULT_STD):
|
||||
self.loader = loader
|
||||
|
@ -26,7 +26,7 @@ class PrefetchLoader:
|
|||
self.std = torch.tensor([x * 255 for x in std]).cuda().view(1, 3, 1, 1)
|
||||
if rand_erase_prob > 0.:
|
||||
self.random_erasing = RandomErasing(
|
||||
probability=rand_erase_prob, per_pixel=rand_erase_pp)
|
||||
probability=rand_erase_prob, mode=rand_erase_mode)
|
||||
else:
|
||||
self.random_erasing = None
|
||||
|
||||
|
@ -68,7 +68,7 @@ def create_loader(
|
|||
is_training=False,
|
||||
use_prefetcher=True,
|
||||
rand_erase_prob=0.,
|
||||
rand_erase_pp=False,
|
||||
rand_erase_mode='const',
|
||||
interpolation='bilinear',
|
||||
mean=IMAGENET_DEFAULT_MEAN,
|
||||
std=IMAGENET_DEFAULT_STD,
|
||||
|
@ -121,7 +121,7 @@ def create_loader(
|
|||
loader = PrefetchLoader(
|
||||
loader,
|
||||
rand_erase_prob=rand_erase_prob if is_training else 0.,
|
||||
rand_erase_pp=rand_erase_pp,
|
||||
rand_erase_mode=rand_erase_mode,
|
||||
mean=mean,
|
||||
std=std)
|
||||
|
||||
|
|
|
@ -5,7 +5,10 @@ import math
|
|||
import torch
|
||||
|
||||
|
||||
def _get_patch(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'):
|
||||
def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'):
|
||||
# NOTE I've seen CUDA illegal memory access errors being caused by the normal_()
|
||||
# paths, flip the order so normal is run on CPU if this becomes a problem
|
||||
# ie torch.empty(patch_size, dtype=dtype).normal_().to(device=device)
|
||||
if per_pixel:
|
||||
return torch.empty(
|
||||
patch_size, dtype=dtype, device=device).normal_()
|
||||
|
@ -27,20 +30,29 @@ class RandomErasing:
|
|||
sl: Minimum proportion of erased area against input image.
|
||||
sh: Maximum proportion of erased area against input image.
|
||||
min_aspect: Minimum aspect ratio of erased area.
|
||||
per_pixel: random value for each pixel in the erase region, precedence over rand_color
|
||||
rand_color: random color for whole erase region, 0 if neither this or per_pixel set
|
||||
mode: pixel color mode, one of 'const', 'rand', or 'pixel'
|
||||
'const' - erase block is constant color of 0 for all channels
|
||||
'rand' - erase block is same per-cannel random (normal) color
|
||||
'pixel' - erase block is per-pixel random (normal) color
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3,
|
||||
per_pixel=False, rand_color=False, device='cuda'):
|
||||
mode='const', device='cuda'):
|
||||
self.probability = probability
|
||||
self.sl = sl
|
||||
self.sh = sh
|
||||
self.min_aspect = min_aspect
|
||||
self.per_pixel = per_pixel # per pixel random, bounded by [pl, ph]
|
||||
self.rand_color = rand_color # per block random, bounded by [pl, ph]
|
||||
mode = mode.lower()
|
||||
self.rand_color = False
|
||||
self.per_pixel = False
|
||||
if mode == 'rand':
|
||||
self.rand_color = True # per block random normal
|
||||
elif mode == 'pixel':
|
||||
self.per_pixel = True # per pixel random normal
|
||||
else:
|
||||
assert not mode or mode == 'const'
|
||||
self.device = device
|
||||
|
||||
def _erase(self, img, chan, img_h, img_w, dtype):
|
||||
|
@ -55,8 +67,9 @@ class RandomErasing:
|
|||
if w < img_w and h < img_h:
|
||||
top = random.randint(0, img_h - h)
|
||||
left = random.randint(0, img_w - w)
|
||||
img[:, top:top + h, left:left + w] = _get_patch(
|
||||
self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device)
|
||||
img[:, top:top + h, left:left + w] = _get_pixels(
|
||||
self.per_pixel, self.rand_color, (chan, h, w),
|
||||
dtype=dtype, device=self.device)
|
||||
break
|
||||
|
||||
def __call__(self, input):
|
||||
|
|
6
train.py
6
train.py
|
@ -69,8 +69,8 @@ parser.add_argument('--drop', type=float, default=0.0, metavar='DROP',
|
|||
help='Dropout rate (default: 0.1)')
|
||||
parser.add_argument('--reprob', type=float, default=0.4, metavar='PCT',
|
||||
help='Random erase prob (default: 0.4)')
|
||||
parser.add_argument('--repp', action='store_true', default=False,
|
||||
help='Random erase per-pixel (default: False)')
|
||||
parser.add_argument('--remode', type=str, default='const',
|
||||
help='Random erase mode (default: "const")')
|
||||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
||||
help='learning rate (default: 0.01)')
|
||||
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
|
||||
|
@ -223,7 +223,7 @@ def main():
|
|||
is_training=True,
|
||||
use_prefetcher=True,
|
||||
rand_erase_prob=args.reprob,
|
||||
rand_erase_pp=args.repp,
|
||||
rand_erase_mode=args.remode,
|
||||
interpolation='random', # FIXME cleanly resolve this? data_config['interpolation'],
|
||||
mean=data_config['mean'],
|
||||
std=data_config['std'],
|
||||
|
|
Loading…
Reference in New Issue