Add ADOPT optimizer
parent
36a45e5d94
commit
79abc25f55
|
@ -1,12 +1,14 @@
|
|||
from .adabelief import AdaBelief
|
||||
from .adafactor import Adafactor
|
||||
from .adafactor_bv import AdafactorBigVision
|
||||
from .adahessian import Adahessian
|
||||
from .adamp import AdamP
|
||||
from .adamw import AdamW
|
||||
from .adan import Adan
|
||||
from .adafactor_bv import AdafactorBigVision
|
||||
from .adopt import Adopt
|
||||
from .lamb import Lamb
|
||||
from .lars import Lars
|
||||
from .lion import Lion
|
||||
from .lookahead import Lookahead
|
||||
from .madgrad import MADGRAD
|
||||
from .nadam import Nadam
|
||||
|
@ -14,5 +16,5 @@ from .nvnovograd import NvNovoGrad
|
|||
from .radam import RAdam
|
||||
from .rmsprop_tf import RMSpropTF
|
||||
from .sgdp import SGDP
|
||||
from .lion import Lion
|
||||
|
||||
from .optim_factory import create_optimizer, create_optimizer_v2, optimizer_kwargs
|
|
@ -0,0 +1,493 @@
|
|||
""" ADOPT PyTorch Optimizer
|
||||
|
||||
ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853
|
||||
|
||||
Modified for reduced dependencies on PyTorch internals from original at: https://github.com/iShohei220/adopt
|
||||
|
||||
@inproceedings{taniguchi2024adopt,
|
||||
author={Taniguchi, Shohei and Harada, Keno and Minegishi, Gouki and Oshima, Yuta and Jeong, Seong Cheol and Nagahara, Go and Iiyama, Tomoshi and Suzuki, Masahiro and Iwasawa, Yusuke and Matsuo, Yutaka},
|
||||
booktitle = {Advances in Neural Information Processing Systems},
|
||||
title = {ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate},
|
||||
year = {2024}
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
from typing import cast, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
__all__ = ["Adopt", "adopt"]
|
||||
|
||||
def _view_as_real(params, *state_and_grads):
|
||||
for i, p in enumerate(params):
|
||||
if torch.is_complex(p):
|
||||
params[i] = torch.view_as_real(params[i])
|
||||
for s in state_and_grads:
|
||||
s[i] = torch.view_as_real(s[i])
|
||||
|
||||
|
||||
def _get_scalar_dtype(is_fused=None):
|
||||
if is_fused:
|
||||
return torch.float32
|
||||
return (
|
||||
torch.float64 if torch.get_default_dtype() == torch.float64 else torch.float32
|
||||
)
|
||||
|
||||
|
||||
def _get_value(x):
|
||||
# item is significantly faster than a cpu tensor in eager mode
|
||||
if not torch.jit.is_scripting() and torch.compiler.is_compiling():
|
||||
return x
|
||||
else:
|
||||
return x.item() if isinstance(x, torch.Tensor) else x
|
||||
|
||||
|
||||
class Adopt(Optimizer):
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr: Union[float, Tensor] = 1e-3,
|
||||
betas: Tuple[float, float] = (0.9, 0.9999),
|
||||
eps: float = 1e-6,
|
||||
weight_decay: float = 0.0,
|
||||
decoupled: bool = False,
|
||||
*,
|
||||
foreach: Optional[bool] = None,
|
||||
maximize: bool = False,
|
||||
capturable: bool = False,
|
||||
differentiable: bool = False,
|
||||
):
|
||||
if isinstance(lr, Tensor):
|
||||
if foreach and not capturable:
|
||||
raise ValueError(
|
||||
"lr as a Tensor is not supported for capturable=False and foreach=True"
|
||||
)
|
||||
if lr.numel() != 1:
|
||||
raise ValueError("Tensor lr must be 1-element")
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError(f"Invalid learning rate: {lr}")
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError(f"Invalid epsilon value: {eps}")
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
||||
if not 0.0 <= weight_decay:
|
||||
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
||||
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
decoupled=decoupled,
|
||||
maximize=maximize,
|
||||
foreach=foreach,
|
||||
capturable=capturable,
|
||||
differentiable=differentiable,
|
||||
)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault("maximize", False)
|
||||
group.setdefault("foreach", None)
|
||||
group.setdefault("capturable", False)
|
||||
group.setdefault("differentiable", False)
|
||||
for p in group["params"]:
|
||||
p_state = self.state.get(p, [])
|
||||
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
|
||||
step_val = float(p_state["step"])
|
||||
p_state["step"] = (
|
||||
torch.tensor(
|
||||
step_val,
|
||||
dtype=_get_scalar_dtype(),
|
||||
device=p.device,
|
||||
)
|
||||
if group["capturable"]
|
||||
else torch.tensor(step_val, dtype=_get_scalar_dtype())
|
||||
)
|
||||
|
||||
def _init_group(
|
||||
self,
|
||||
group,
|
||||
params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
state_steps,
|
||||
):
|
||||
has_complex = False
|
||||
for p in group["params"]:
|
||||
if p.grad is not None:
|
||||
has_complex |= torch.is_complex(p)
|
||||
params_with_grad.append(p)
|
||||
if p.grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
"ADOPT does not support sparse gradients"
|
||||
)
|
||||
grads.append(p.grad)
|
||||
|
||||
state = self.state[p]
|
||||
# Lazy state initialization
|
||||
if len(state) == 0:
|
||||
# note(crcrpar): [special device hosting for step]
|
||||
# Deliberately host `step` on CPU if both capturable and fused are off.
|
||||
# This is because kernel launches are costly on CUDA and XLA.
|
||||
state["step"] = (
|
||||
torch.zeros(
|
||||
(),
|
||||
dtype=_get_scalar_dtype(),
|
||||
device=p.device,
|
||||
)
|
||||
if group["capturable"]
|
||||
else torch.tensor(0.0, dtype=_get_scalar_dtype())
|
||||
)
|
||||
# Exponential moving average of gradient values
|
||||
state["exp_avg"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
# Exponential moving average of squared gradient values
|
||||
state["exp_avg_sq"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
|
||||
exp_avgs.append(state["exp_avg"])
|
||||
exp_avg_sqs.append(state["exp_avg_sq"])
|
||||
|
||||
if group["differentiable"] and state["step"].requires_grad:
|
||||
raise RuntimeError(
|
||||
"`requires_grad` is not supported for `step` in differentiable mode"
|
||||
)
|
||||
|
||||
# Foreach without capturable does not support a tensor lr
|
||||
if (
|
||||
group["foreach"]
|
||||
and torch.is_tensor(group["lr"])
|
||||
and not group["capturable"]
|
||||
):
|
||||
raise RuntimeError(
|
||||
"lr as a Tensor is not supported for capturable=False and foreach=True"
|
||||
)
|
||||
|
||||
state_steps.append(state["step"])
|
||||
return has_complex
|
||||
|
||||
#@_use_grad_for_differentiable # FIXME internal context mgr, can't use
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Perform a single optimization step.
|
||||
|
||||
Args:
|
||||
closure (Callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
self._cuda_graph_capture_health_check()
|
||||
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad: List[Tensor] = []
|
||||
grads: List[Tensor] = []
|
||||
exp_avgs: List[Tensor] = []
|
||||
exp_avg_sqs: List[Tensor] = []
|
||||
state_steps: List[Tensor] = []
|
||||
beta1, beta2 = group["betas"]
|
||||
|
||||
has_complex = self._init_group(
|
||||
group,
|
||||
params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
state_steps,
|
||||
)
|
||||
|
||||
adopt(
|
||||
params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
state_steps,
|
||||
has_complex=has_complex,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=group["lr"],
|
||||
weight_decay=group["weight_decay"],
|
||||
decoupled=group["decoupled"],
|
||||
eps=group["eps"],
|
||||
maximize=group["maximize"],
|
||||
foreach=group["foreach"],
|
||||
capturable=group["capturable"],
|
||||
differentiable=group["differentiable"],
|
||||
grad_scale=getattr(self, "grad_scale", None),
|
||||
found_inf=getattr(self, "found_inf", None),
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
def _single_tensor_adopt(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
exp_avgs: List[Tensor],
|
||||
exp_avg_sqs: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
grad_scale: Optional[Tensor],
|
||||
found_inf: Optional[Tensor],
|
||||
*,
|
||||
has_complex: bool,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: Union[float, Tensor],
|
||||
weight_decay: float,
|
||||
decoupled: bool,
|
||||
eps: float,
|
||||
maximize: bool,
|
||||
capturable: bool,
|
||||
differentiable: bool,
|
||||
):
|
||||
assert grad_scale is None and found_inf is None
|
||||
|
||||
if torch.jit.is_scripting():
|
||||
# this assert is due to JIT being dumb and not realizing that the ops below
|
||||
# have overloads to handle both float and Tensor lrs, so we just assert it's
|
||||
# a float since most people using JIT are using floats
|
||||
assert isinstance(lr, float)
|
||||
|
||||
for i, param in enumerate(params):
|
||||
grad = grads[i] if not maximize else -grads[i]
|
||||
exp_avg = exp_avgs[i]
|
||||
exp_avg_sq = exp_avg_sqs[i]
|
||||
step_t = state_steps[i]
|
||||
|
||||
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
|
||||
if not torch._utils.is_compiling() and capturable:
|
||||
from torch.optim.optimizer import _get_capturable_supported_devices
|
||||
capturable_supported_devices = _get_capturable_supported_devices()
|
||||
assert (
|
||||
param.device.type == step_t.device.type
|
||||
and param.device.type in capturable_supported_devices
|
||||
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
|
||||
|
||||
# update step
|
||||
step_t += 1
|
||||
|
||||
if weight_decay != 0:
|
||||
if decoupled:
|
||||
param.add_(param, alpha=-lr * weight_decay)
|
||||
else:
|
||||
grad = grad.add(param, alpha=weight_decay)
|
||||
|
||||
if torch.is_complex(param):
|
||||
grad = torch.view_as_real(grad)
|
||||
if exp_avg is not None:
|
||||
exp_avg = torch.view_as_real(exp_avg)
|
||||
if exp_avg_sq is not None:
|
||||
exp_avg_sq = torch.view_as_real(exp_avg_sq)
|
||||
param = torch.view_as_real(param)
|
||||
|
||||
step = step_t if capturable or differentiable else _get_value(step_t)
|
||||
if step == 1:
|
||||
exp_avg_sq.addcmul_(grad, grad.conj())
|
||||
continue
|
||||
|
||||
denom = torch.clamp(exp_avg_sq.sqrt(), eps)
|
||||
if step == 2:
|
||||
exp_avg.addcdiv_(grad, denom)
|
||||
else:
|
||||
exp_avg.mul_(beta1).addcdiv_(grad, denom, value=1 - beta1)
|
||||
|
||||
param.add_(exp_avg, alpha=-lr)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
|
||||
|
||||
|
||||
def _multi_tensor_adopt(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
exp_avgs: List[Tensor],
|
||||
exp_avg_sqs: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
grad_scale: Optional[Tensor],
|
||||
found_inf: Optional[Tensor],
|
||||
*,
|
||||
has_complex: bool,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: Union[float, Tensor],
|
||||
weight_decay: float,
|
||||
decoupled: bool,
|
||||
eps: float,
|
||||
maximize: bool,
|
||||
capturable: bool,
|
||||
differentiable: bool,
|
||||
):
|
||||
if len(params) == 0:
|
||||
return
|
||||
|
||||
if isinstance(lr, Tensor) and not capturable:
|
||||
raise RuntimeError(
|
||||
"lr as a Tensor is not supported for capturable=False and foreach=True"
|
||||
)
|
||||
|
||||
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
|
||||
if not torch._utils.is_compiling() and capturable:
|
||||
from torch.optim.optimizer import _get_capturable_supported_devices
|
||||
capturable_supported_devices = _get_capturable_supported_devices(
|
||||
supports_xla=False
|
||||
)
|
||||
assert all(
|
||||
p.device.type == step.device.type
|
||||
and p.device.type in capturable_supported_devices
|
||||
for p, step in zip(params, state_steps)
|
||||
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
|
||||
|
||||
assert grad_scale is None and found_inf is None
|
||||
|
||||
assert not differentiable, "_foreach ops don't support autograd"
|
||||
|
||||
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
||||
[params, grads, exp_avgs, exp_avg_sqs, state_steps] # type: ignore[list-item]
|
||||
)
|
||||
for (
|
||||
device_params_,
|
||||
device_grads_,
|
||||
device_exp_avgs_,
|
||||
device_exp_avg_sqs_,
|
||||
device_state_steps_,
|
||||
), _ in grouped_tensors.values():
|
||||
device_params = cast(List[Tensor], device_params_)
|
||||
device_grads = cast(List[Tensor], device_grads_)
|
||||
device_exp_avgs = cast(List[Tensor], device_exp_avgs_)
|
||||
device_exp_avg_sqs = cast(List[Tensor], device_exp_avg_sqs_)
|
||||
device_state_steps = cast(List[Tensor], device_state_steps_)
|
||||
|
||||
# Handle complex parameters
|
||||
if has_complex:
|
||||
_view_as_real(
|
||||
device_params, device_grads, device_exp_avgs, device_exp_avg_sqs
|
||||
)
|
||||
|
||||
if maximize:
|
||||
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
|
||||
|
||||
# Update steps
|
||||
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
|
||||
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
|
||||
# wrapped it once now. The alpha is required to assure we go to the right overload.
|
||||
if not torch._utils.is_compiling() and device_state_steps[0].is_cpu:
|
||||
torch._foreach_add_(
|
||||
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
|
||||
)
|
||||
else:
|
||||
torch._foreach_add_(device_state_steps, 1)
|
||||
|
||||
if weight_decay != 0:
|
||||
if decoupled:
|
||||
torch._foreach_add_(device_params, device_params, alpha=-lr * weight_decay)
|
||||
else:
|
||||
# Re-use the intermediate memory (device_grads) already allocated for maximize
|
||||
if maximize:
|
||||
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
|
||||
else:
|
||||
device_grads = torch._foreach_add( # type: ignore[assignment]
|
||||
device_grads, device_params, alpha=weight_decay
|
||||
)
|
||||
|
||||
if device_state_steps[0] == 1:
|
||||
torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads)
|
||||
continue
|
||||
|
||||
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
|
||||
exp_avg_sq_sqrt = torch._foreach_maximum(exp_avg_sq_sqrt, eps)
|
||||
|
||||
if device_state_steps[0] == 2:
|
||||
torch._foreach_addcdiv_(device_exp_avgs, device_grads, exp_avg_sq_sqrt)
|
||||
else:
|
||||
torch._foreach_mul_(device_exp_avgs, beta1)
|
||||
torch._foreach_addcdiv_(
|
||||
device_exp_avgs, device_grads, exp_avg_sq_sqrt, value=1 - beta1
|
||||
)
|
||||
|
||||
torch._foreach_add_(device_params, device_exp_avgs, alpha=-lr)
|
||||
torch._foreach_mul_(device_exp_avg_sqs, beta2)
|
||||
torch._foreach_addcmul_(
|
||||
device_exp_avg_sqs, device_grads, device_grads, value=1 - beta2
|
||||
)
|
||||
|
||||
|
||||
#@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adopt) # FIXME internal context mgr, can't use
|
||||
def adopt(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
exp_avgs: List[Tensor],
|
||||
exp_avg_sqs: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
||||
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
||||
foreach: Optional[bool] = None,
|
||||
capturable: bool = False,
|
||||
differentiable: bool = False,
|
||||
grad_scale: Optional[Tensor] = None,
|
||||
found_inf: Optional[Tensor] = None,
|
||||
has_complex: bool = False,
|
||||
*,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: Union[float, Tensor],
|
||||
weight_decay: float,
|
||||
decoupled: bool,
|
||||
eps: float,
|
||||
maximize: bool,
|
||||
):
|
||||
r"""Functional API that performs ADOPT algorithm computation.
|
||||
|
||||
"""
|
||||
if foreach is None:
|
||||
foreach = False
|
||||
|
||||
# this check is slow during compilation, so we skip it
|
||||
# if it's strictly needed we can add this check back in dynamo
|
||||
if not torch._utils.is_compiling() and not all(
|
||||
isinstance(t, torch.Tensor) for t in state_steps
|
||||
):
|
||||
raise RuntimeError(
|
||||
"API has changed, `state_steps` argument must contain a list of singleton tensors"
|
||||
)
|
||||
|
||||
if foreach and torch.jit.is_scripting():
|
||||
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
|
||||
|
||||
if foreach and not torch.jit.is_scripting():
|
||||
func = _multi_tensor_adopt
|
||||
else:
|
||||
func = _single_tensor_adopt
|
||||
|
||||
func(
|
||||
params,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
state_steps,
|
||||
has_complex=has_complex,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=lr,
|
||||
weight_decay=weight_decay,
|
||||
decoupled=decoupled,
|
||||
eps=eps,
|
||||
maximize=maximize,
|
||||
capturable=capturable,
|
||||
differentiable=differentiable,
|
||||
grad_scale=grad_scale,
|
||||
found_inf=found_inf,
|
||||
)
|
|
@ -17,6 +17,7 @@ from .adafactor import Adafactor
|
|||
from .adahessian import Adahessian
|
||||
from .adamp import AdamP
|
||||
from .adan import Adan
|
||||
from .adopt import Adopt
|
||||
from .lamb import Lamb
|
||||
from .lars import Lars
|
||||
from .lion import Lion
|
||||
|
@ -359,6 +360,10 @@ def create_optimizer_v2(
|
|||
optimizer = Lion(parameters, **opt_args)
|
||||
elif opt_lower == 'adafactorbv':
|
||||
optimizer = AdafactorBigVision(parameters, **opt_args)
|
||||
elif opt_lower == 'adopt':
|
||||
optimizer = Adopt(parameters, **opt_args)
|
||||
elif opt_lower == 'adoptw':
|
||||
optimizer = Adopt(parameters, decoupled=True, **opt_args)
|
||||
|
||||
# second order
|
||||
elif opt_lower == 'adahessian':
|
||||
|
|
Loading…
Reference in New Issue