mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add link to model weights on Hugging Face
This commit is contained in:
parent
530fb49e7e
commit
7a2ad6bce1
@ -1,7 +1,7 @@
|
||||
""" ViTamin
|
||||
|
||||
Paper: Designing Scalable Vison Models in the Vision-Language Era
|
||||
Model Weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf
|
||||
A family of model weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf
|
||||
|
||||
@inproceedings{chen2024vitamin,
|
||||
title={ViTamin: Designing Scalable Vision Models in the Vision-language Era},
|
||||
@ -529,11 +529,4 @@ def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
|
||||
model_args = dict(img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
||||
model = _create_vision_transformer_hybrid(
|
||||
'vitamin_xlarge_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = timm.create_model('vitamin_large', num_classes=10).cuda()
|
||||
x = torch.rand([2,3,224,224]).cuda()
|
||||
y = model(x)
|
||||
print(y.shape)
|
||||
return model
|
Loading…
x
Reference in New Issue
Block a user