mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Update README.md, bump dev version 1.0.6
This commit is contained in:
parent
e42e453128
commit
7b5f17d1bd
22
README.md
22
README.md
@ -26,6 +26,28 @@
|
||||
* The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license.
|
||||
* Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version.
|
||||
|
||||
### June 12, 2024
|
||||
* MobileNetV4 models and initial set of `timm` trained weights added:
|
||||
|
||||
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|
||||
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
|
||||
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 |
|
||||
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 |
|
||||
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 |
|
||||
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 |
|
||||
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 |
|
||||
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 |
|
||||
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 |
|
||||
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 |
|
||||
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 |
|
||||
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 |
|
||||
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 |
|
||||
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 |
|
||||
|
||||
* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
|
||||
* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
|
||||
* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.
|
||||
|
||||
### May 14, 2024
|
||||
* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
|
||||
* Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
|
||||
|
@ -1 +1 @@
|
||||
__version__ = '1.0.5.dev0'
|
||||
__version__ = '1.0.6.dev0'
|
||||
|
Loading…
x
Reference in New Issue
Block a user