mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Adding some configs to sknet, incl ResNet50 variants from 'Compounding ... Assembled Techniques' paper and original SKNet50
This commit is contained in:
parent
a9d2424fd1
commit
7d07ebb660
@ -22,7 +22,10 @@ def _cfg(url='', **kwargs):
|
|||||||
|
|
||||||
default_cfgs = {
|
default_cfgs = {
|
||||||
'skresnet18': _cfg(url=''),
|
'skresnet18': _cfg(url=''),
|
||||||
'skresnet26d': _cfg()
|
'skresnet26d': _cfg(),
|
||||||
|
'skresnet50': _cfg(),
|
||||||
|
'skresnet50d': _cfg(),
|
||||||
|
'skresnext50_32x4d': _cfg(),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -131,24 +134,6 @@ class SelectiveKernelBottleneck(nn.Module):
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
||||||
"""Constructs a ResNet-26 model.
|
|
||||||
"""
|
|
||||||
default_cfg = default_cfgs['skresnet26d']
|
|
||||||
sk_kwargs = dict(
|
|
||||||
keep_3x3=False,
|
|
||||||
)
|
|
||||||
model = ResNet(
|
|
||||||
SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True,
|
|
||||||
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs),
|
|
||||||
**kwargs)
|
|
||||||
model.default_cfg = default_cfg
|
|
||||||
if pretrained:
|
|
||||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
"""Constructs a ResNet-18 model.
|
"""Constructs a ResNet-18 model.
|
||||||
@ -181,4 +166,75 @@ def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|||||||
model.default_cfg = default_cfg
|
model.default_cfg = default_cfg
|
||||||
if pretrained:
|
if pretrained:
|
||||||
load_pretrained(model, default_cfg, num_classes, in_chans)
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
"""Constructs a ResNet-26 model.
|
||||||
|
"""
|
||||||
|
default_cfg = default_cfgs['skresnet26d']
|
||||||
|
sk_kwargs = dict(
|
||||||
|
keep_3x3=False,
|
||||||
|
)
|
||||||
|
model = ResNet(
|
||||||
|
SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True,
|
||||||
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs),
|
||||||
|
**kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
"""Constructs a Select Kernel ResNet-50 model.
|
||||||
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
||||||
|
Convolutional Neural Network"
|
||||||
|
"""
|
||||||
|
sk_kwargs = dict(
|
||||||
|
attn_reduction=2,
|
||||||
|
)
|
||||||
|
default_cfg = default_cfgs['skresnet50']
|
||||||
|
model = ResNet(
|
||||||
|
SelectiveKernelBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
|
||||||
|
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
"""Constructs a Select Kernel ResNet-50-D model.
|
||||||
|
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
|
||||||
|
Convolutional Neural Network"
|
||||||
|
"""
|
||||||
|
sk_kwargs = dict(
|
||||||
|
attn_reduction=2,
|
||||||
|
)
|
||||||
|
default_cfg = default_cfgs['skresnet50d']
|
||||||
|
model = ResNet(
|
||||||
|
SelectiveKernelBottleneck, [3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
||||||
|
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def skresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
||||||
|
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
|
||||||
|
the SKNet50 model in the Select Kernel Paper
|
||||||
|
"""
|
||||||
|
default_cfg = default_cfgs['skresnext50_32x4d']
|
||||||
|
model = ResNet(
|
||||||
|
SelectiveKernelBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
||||||
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
||||||
|
model.default_cfg = default_cfg
|
||||||
|
if pretrained:
|
||||||
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
||||||
|
return model
|
||||||
|
Loading…
x
Reference in New Issue
Block a user