Add native PyTorch weights for EfficientNet-B0 w/ top-1 > 76.9
* also add pooling details to default cfg for efficiennets so testtimepool wrapper workspull/13/head
parent
105d5702d7
commit
7d17394bdc
|
@ -67,6 +67,7 @@ I've leveraged the training scripts in this repository to train a few of the mod
|
||||||
|---|---|---|---|---|
|
|---|---|---|---|---|
|
||||||
| resnext50_32x4d | 78.512 (21.488) | 94.042 (5.958) | 25M | bicubic |
|
| resnext50_32x4d | 78.512 (21.488) | 94.042 (5.958) | 25M | bicubic |
|
||||||
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic |
|
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic |
|
||||||
|
| efficientnet_b0 | 76.912 (23.088) | 93.210 (6.790) | 5.29M | bicubic |
|
||||||
| mobilenetv3_100 | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic |
|
| mobilenetv3_100 | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic |
|
||||||
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear |
|
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear |
|
||||||
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear |
|
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear |
|
||||||
|
|
|
@ -74,23 +74,29 @@ default_cfgs = {
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth'),
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth'),
|
||||||
'spnasnet_100': _cfg(
|
'spnasnet_100': _cfg(
|
||||||
url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet_100-048bc3f4.pth?dl=1'),
|
url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet_100-048bc3f4.pth?dl=1'),
|
||||||
'efficientnet_b0': _cfg(url=''),
|
'efficientnet_b0': _cfg(
|
||||||
'efficientnet_b1': _cfg(url='', input_size=(3, 240, 240)),
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0-d6904d92.pth',
|
||||||
'efficientnet_b2': _cfg(url='', input_size=(3, 260, 260)),
|
interpolation='bicubic'),
|
||||||
'efficientnet_b3': _cfg(url='', input_size=(3, 300, 300)),
|
'efficientnet_b1': _cfg(
|
||||||
'efficientnet_b4': _cfg(url='', input_size=(3, 380, 380)),
|
url='', input_size=(3, 240, 240), pool_size=(8, 8)),
|
||||||
|
'efficientnet_b2': _cfg(
|
||||||
|
url='', input_size=(3, 260, 260), pool_size=(9, 9)),
|
||||||
|
'efficientnet_b3': _cfg(
|
||||||
|
url='', input_size=(3, 300, 300), pool_size=(10, 10)),
|
||||||
|
'efficientnet_b4': _cfg(
|
||||||
|
url='', input_size=(3, 380, 380), pool_size=(12, 12)),
|
||||||
'tf_efficientnet_b0': _cfg(
|
'tf_efficientnet_b0': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth',
|
||||||
input_size=(3, 224, 224), interpolation='bicubic'),
|
input_size=(3, 224, 224), interpolation='bicubic'),
|
||||||
'tf_efficientnet_b1': _cfg(
|
'tf_efficientnet_b1': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth',
|
||||||
input_size=(3, 240, 240), interpolation='bicubic', crop_pct=0.882),
|
input_size=(3, 240, 240), pool_size=(8, 8), interpolation='bicubic', crop_pct=0.882),
|
||||||
'tf_efficientnet_b2': _cfg(
|
'tf_efficientnet_b2': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth',
|
||||||
input_size=(3, 260, 260), interpolation='bicubic', crop_pct=0.890),
|
input_size=(3, 260, 260), pool_size=(9, 9), interpolation='bicubic', crop_pct=0.890),
|
||||||
'tf_efficientnet_b3': _cfg(
|
'tf_efficientnet_b3': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth',
|
||||||
input_size=(3, 300, 300), interpolation='bicubic', crop_pct=0.904),
|
input_size=(3, 300, 300), pool_size=(10, 10), interpolation='bicubic', crop_pct=0.904),
|
||||||
}
|
}
|
||||||
|
|
||||||
_DEBUG = False
|
_DEBUG = False
|
||||||
|
|
|
@ -31,7 +31,7 @@ def apply_test_time_pool(model, config, args):
|
||||||
if not args.no_test_pool and \
|
if not args.no_test_pool and \
|
||||||
config['input_size'][-1] > model.default_cfg['input_size'][-1] and \
|
config['input_size'][-1] > model.default_cfg['input_size'][-1] and \
|
||||||
config['input_size'][-2] > model.default_cfg['input_size'][-2]:
|
config['input_size'][-2] > model.default_cfg['input_size'][-2]:
|
||||||
print('Target input size (%s) > pretrained default (%s), using test time pooling' %
|
print('Target input size %s > pretrained default %s, using test time pooling' %
|
||||||
(str(config['input_size'][-2:]), str(model.default_cfg['input_size'][-2:])))
|
(str(config['input_size'][-2:]), str(model.default_cfg['input_size'][-2:])))
|
||||||
model = TestTimePoolHead(model, original_pool=model.default_cfg['pool_size'])
|
model = TestTimePoolHead(model, original_pool=model.default_cfg['pool_size'])
|
||||||
test_time_pool = True
|
test_time_pool = True
|
||||||
|
|
Loading…
Reference in New Issue