Working on support for siglip (w/ attn pool) vit backbone, and adding registers (reg tokens)

vit_siglip_and_reg
Ross Wightman 2023-09-30 16:03:01 -07:00
parent 054c763fca
commit 82cc53237e
2 changed files with 192 additions and 14 deletions

View File

@ -160,7 +160,11 @@ def load_pretrained(
state_dict = pretrained_loc # pretrained_loc is the actual state dict for this override
elif load_from == 'file':
_logger.info(f'Loading pretrained weights from file ({pretrained_loc})')
state_dict = load_state_dict(pretrained_loc)
if pretrained_cfg.get('custom_load', False):
model.load_pretrained(pretrained_loc)
return
else:
state_dict = load_state_dict(pretrained_loc)
elif load_from == 'url':
_logger.info(f'Loading pretrained weights from url ({pretrained_loc})')
if pretrained_cfg.get('custom_load', False):

View File

@ -377,6 +377,72 @@ class ParallelThingsBlock(nn.Module):
return self._forward(x)
class AttentionPoolLatent(nn.Module):
""" Attention pooling w/ latent query
"""
def __init__(
self,
in_features: int,
out_features: int = None,
embed_dim: int = None,
num_heads: int = 8,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
qk_norm: bool = False,
latent_size: int = 1,
latent_dim: int = None,
pos_embed: str = '',
pool_type: str = 'token',
norm_layer: Optional[nn.Module] = None,
drop: float = 0.0,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
assert embed_dim % num_heads == 0
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim ** -0.5
self.pool = pool_type
if pos_embed == 'abs':
spatial_len = self.feat_size
self.pos_embed = nn.Parameter(torch.zeros(spatial_len, in_features))
else:
self.pos_embed = None
self.latent_dim = latent_dim or embed_dim
latent_size = latent_size or self.feat_size
self.latent_len = latent_size
self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim))
self.attn = Attention(embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm)
self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity()
self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio))
def init_weights(self):
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
def forward(self, x):
B, N, _ = x.shape
if self.pos_embed is not None:
# FIXME interpolate
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
latent_q = self.latent.expand(B, -1, -1)
x = self.attn(torch.cat([latent_q, x], dim=1))
x = x + self.mlp(self.norm(x))
# optional pool if latent seq_len > 1 and pooled output is desired
if self.pool == 'token':
x = x[:, 0]
elif self.pool == 'avg':
x = x.mean(1)
return x
class VisionTransformer(nn.Module):
""" Vision Transformer
@ -401,8 +467,10 @@ class VisionTransformer(nn.Module):
init_values: Optional[float] = None,
class_token: bool = True,
no_embed_class: bool = False,
reg_tokens: int = 0,
pre_norm: bool = False,
fc_norm: Optional[bool] = None,
use_attn_pool: bool = False,
dynamic_img_size: bool = False,
dynamic_img_pad: bool = False,
drop_rate: float = 0.,
@ -432,6 +500,8 @@ class VisionTransformer(nn.Module):
qkv_bias: Enable bias for qkv projections if True.
init_values: Layer-scale init values (layer-scale enabled if not None).
class_token: Use class token.
no_embed_class: Don't include position embeddings for class (or reg) tokens.
reg_tokens: Number of register tokens.
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
drop_rate: Head dropout rate.
pos_drop_rate: Position embedding dropout rate.
@ -445,7 +515,7 @@ class VisionTransformer(nn.Module):
"""
super().__init__()
assert global_pool in ('', 'avg', 'token')
assert class_token or global_pool != 'token'
assert class_token or use_attn_pool or global_pool != 'token'
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
@ -454,7 +524,10 @@ class VisionTransformer(nn.Module):
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
self.num_prefix_tokens += reg_tokens
self.num_reg_tokens = reg_tokens
self.has_class_token = class_token
self.no_embed_class = no_embed_class # don't embed prefix positions (includes reg)
self.dynamic_img_size = dynamic_img_size
self.grad_checkpointing = False
@ -474,6 +547,7 @@ class VisionTransformer(nn.Module):
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
self.pos_drop = nn.Dropout(p=pos_drop_rate)
@ -506,6 +580,14 @@ class VisionTransformer(nn.Module):
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
# Classifier Head
if use_attn_pool == 'map':
self.attn_pool = AttentionPoolLatent(
self.embed_dim,
num_heads=num_heads,
norm_layer=norm_layer,
)
else:
self.attn_pool = None
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
@ -566,18 +648,26 @@ class VisionTransformer(nn.Module):
x = x.view(B, -1, C)
else:
pos_embed = self.pos_embed
to_cat = []
if self.cls_token is not None:
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
if self.reg_token is not None:
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
x = x + pos_embed
return self.pos_drop(x)
def _intermediate_layers(
@ -605,7 +695,7 @@ class VisionTransformer(nn.Module):
x: torch.Tensor,
n: Union[int, Sequence] = 1,
reshape: bool = False,
return_class_token: bool = False,
return_prefix_tokens: bool = False,
norm: bool = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
""" Intermediate layer accessor (NOTE: This is a WIP experiment).
@ -615,7 +705,7 @@ class VisionTransformer(nn.Module):
outputs = self._intermediate_layers(x, n)
if norm:
outputs = [self.norm(out) for out in outputs]
class_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs]
prefix_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs]
outputs = [out[:, self.num_prefix_tokens:] for out in outputs]
if reshape:
@ -625,8 +715,8 @@ class VisionTransformer(nn.Module):
for out in outputs
]
if return_class_token:
return tuple(zip(outputs, class_tokens))
if return_prefix_tokens:
return tuple(zip(outputs, prefix_tokens))
return tuple(outputs)
def forward_features(self, x):
@ -642,8 +732,12 @@ class VisionTransformer(nn.Module):
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
if self.attn_pool is not None:
x = self.attn_pool(x)
elif self.global_pool == 'avg':
x = x[:, self.num_prefix_tokens:].mean(dim=1)
elif self.global_pool:
x = x[:, 0] # class token
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
@ -767,6 +861,9 @@ def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str =
elif 'params/embedding/kernel' in w:
prefix = 'params/'
big_vision = True
elif 'params/img/embedding/kernel' in w:
prefix = 'params/img/'
big_vision = True
if hasattr(model.patch_embed, 'backbone'):
# hybrid
@ -823,13 +920,31 @@ def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str =
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
if (isinstance(model.head, nn.Linear) and
f'{prefix}head/bias' in w and
model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]):
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
if model.attn_pool is not None:
block_prefix = f'{prefix}MAPHead_0/'
mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/'
model.attn_pool.latent.copy_(_n2p(w[f'{block_prefix}probe'], t=False))
model.attn_pool.norm.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
model.attn_pool.norm.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
model.attn_pool.attn.qkv.weight.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
model.attn_pool.attn.qkv.bias.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
model.attn_pool.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
model.attn_pool.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
for r in range(2):
getattr(model.attn_pool.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/kernel']))
getattr(model.attn_pool.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/bias']))
mha_sub, b_sub, ln1_sub = (0, 0, 1) if big_vision else (1, 3, 2)
for i, block in enumerate(model.blocks.children()):
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
@ -1493,6 +1608,12 @@ default_cfgs = generate_default_cfgs({
# hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch16_siglip_224': _cfg(
file='/data/n/temp/siglip/webli_en_b16_224_63724782.npz',
custom_load=True,
# hf_hub_id='timm/',
num_classes=0),
})
@ -2119,6 +2240,59 @@ def vit_gigantic_patch16_224_ijepa(pretrained=False, **kwargs) -> VisionTransfor
return model
@register_model
def vit_base_patch16_siglip_224(pretrained=False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, use_attn_pool=True,
)
model = _create_vision_transformer(
'vit_base_patch16_siglip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_medium_patch16_reg8_224(pretrained=False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=True, no_embed_class=True,
reg_tokens=8,
)
model = _create_vision_transformer(
'vit_base_patch16_reg8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_reg8_224(pretrained=False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=8,
class_token=True, no_embed_class=True, reg_tokens=8,
)
model = _create_vision_transformer(
'vit_base_patch16_reg8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_medium_patch16_reg8_224(pretrained=False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8,
class_token=True, no_embed_class=True, reg_tokens=8,
)
model = _create_vision_transformer(
'vit_base_patch16_reg8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_reg8_gap_224(pretrained=False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=8, global_pool='avg', reg_tokens=8,
)
model = _create_vision_transformer(
'vit_base_patch16_reg8_gap_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
register_model_deprecations(__name__, {
'vit_tiny_patch16_224_in21k': 'vit_tiny_patch16_224.augreg_in21k',
'vit_small_patch32_224_in21k': 'vit_small_patch32_224.augreg_in21k',