Add 'Maybe' PIL / image tensor conversions in case image alread in tensor format

This commit is contained in:
Ross Wightman 2024-07-08 13:43:51 -07:00
parent 648aaa4123
commit 83c2c2f0c5
2 changed files with 58 additions and 9 deletions

View File

@ -5,6 +5,7 @@ import warnings
from typing import List, Sequence, Tuple, Union
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
try:
from torchvision.transforms.functional import InterpolationMode
@ -17,7 +18,7 @@ import numpy as np
__all__ = [
"ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str",
"RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad",
"RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder"
"RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor"
]
@ -40,6 +41,54 @@ class ToTensor:
return F.pil_to_tensor(pil_img).to(dtype=self.dtype)
class MaybeToTensor(transforms.ToTensor):
"""Convert a PIL Image or ndarray to tensor if it's not already one.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic) -> torch.Tensor:
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
class MaybePILToTensor:
"""Convert a PIL Image to a tensor of the same type - this does not scale values.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic):
"""
Note: A deep copy of the underlying array is performed.
Args:
pic (PIL Image): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.pil_to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in
# favor of the Image.Resampling enum. The top-level resampling attributes will be
# removed in Pillow 10.

View File

@ -11,8 +11,8 @@ from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation,\
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor
from timm.data.random_erasing import RandomErasing
@ -49,10 +49,10 @@ def transforms_noaug_train(
tfl += [ToNumpy()]
elif not normalize:
# when normalize disabled, converted to tensor without scaling, keep original dtype
tfl += [transforms.PILToTensor()]
tfl += [MaybePILToTensor()]
else:
tfl += [
transforms.ToTensor(),
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std)
@ -218,10 +218,10 @@ def transforms_imagenet_train(
final_tfl += [ToNumpy()]
elif not normalize:
# when normalize disable, converted to tensor without scaling, keeps original dtype
final_tfl += [transforms.PILToTensor()]
final_tfl += [MaybePILToTensor()]
else:
final_tfl += [
transforms.ToTensor(),
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std),
@ -318,10 +318,10 @@ def transforms_imagenet_eval(
tfl += [ToNumpy()]
elif not normalize:
# when normalize disabled, converted to tensor without scaling, keeps original dtype
tfl += [transforms.PILToTensor()]
tfl += [MaybePILToTensor()]
else:
tfl += [
transforms.ToTensor(),
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std),