Update experimental vit model configs
parent
7d3c2dc993
commit
87fec3dc14
|
@ -1723,7 +1723,12 @@ default_cfgs = {
|
|||
input_size=(3, 256, 256)),
|
||||
'vit_medium_patch16_reg4_gap_256': _cfg(
|
||||
input_size=(3, 256, 256)),
|
||||
'vit_base_patch16_reg8_gap_256': _cfg(input_size=(3, 256, 256)),
|
||||
'vit_base_patch16_reg4_gap_256': _cfg(
|
||||
input_size=(3, 256, 256)),
|
||||
'vit_so150m_patch16_reg4_gap_256': _cfg(
|
||||
input_size=(3, 256, 256)),
|
||||
'vit_so150m_patch16_reg4_map_256': _cfg(
|
||||
input_size=(3, 256, 256)),
|
||||
}
|
||||
|
||||
_quick_gelu_cfgs = [
|
||||
|
@ -2623,13 +2628,35 @@ def vit_medium_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visio
|
|||
|
||||
|
||||
@register_model
|
||||
def vit_base_patch16_reg8_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||
def vit_base_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||
model_args = dict(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False,
|
||||
no_embed_class=True, global_pool='avg', reg_tokens=8,
|
||||
no_embed_class=True, global_pool='avg', reg_tokens=4,
|
||||
)
|
||||
model = _create_vision_transformer(
|
||||
'vit_base_patch16_reg8_gap_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||
'vit_base_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_so150m_patch16_reg4_map_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||
model_args = dict(
|
||||
patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572,
|
||||
class_token=False, reg_tokens=4, global_pool='map',
|
||||
)
|
||||
model = _create_vision_transformer(
|
||||
'vit_so150m_patch16_reg4_map_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||
model_args = dict(
|
||||
patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572,
|
||||
class_token=False, reg_tokens=4, global_pool='avg', fc_norm=False,
|
||||
)
|
||||
model = _create_vision_transformer(
|
||||
'vit_so150m_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||
return model
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue