mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
fix all SDPA dropouts
This commit is contained in:
parent
b500cae4c5
commit
884ef88818
@ -155,7 +155,7 @@ class Attention(nn.Module):
|
|||||||
x = F.scaled_dot_product_attention(
|
x = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=rel_pos_bias,
|
attn_mask=rel_pos_bias,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -50,7 +50,7 @@ class ClassAttn(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x_cls = torch.nn.functional.scaled_dot_product_attention(
|
x_cls = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -126,7 +126,7 @@ class EvaAttention(nn.Module):
|
|||||||
x = F.scaled_dot_product_attention(
|
x = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=attn_mask,
|
attn_mask=attn_mask,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -514,7 +514,7 @@ class Attention(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p if self.training else 0.0,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -190,7 +190,7 @@ class Attention2d(nn.Module):
|
|||||||
k.transpose(-1, -2).contiguous(),
|
k.transpose(-1, -2).contiguous(),
|
||||||
v.transpose(-1, -2).contiguous(),
|
v.transpose(-1, -2).contiguous(),
|
||||||
attn_mask=attn_bias,
|
attn_mask=attn_bias,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
).transpose(-1, -2).reshape(B, -1, H, W)
|
).transpose(-1, -2).reshape(B, -1, H, W)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
@ -259,7 +259,7 @@ class AttentionCl(nn.Module):
|
|||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=attn_bias,
|
attn_mask=attn_bias,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -198,7 +198,7 @@ class Attention(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = F.scaled_dot_product_attention(
|
x = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||||
|
@ -59,14 +59,14 @@ class Attention(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
"""
|
"""
|
||||||
x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim)
|
x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim)
|
||||||
"""
|
"""
|
||||||
B, T, N, C = x.shape
|
B, T, N, C = x.shape
|
||||||
# result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head)
|
# result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head)
|
||||||
qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5)
|
qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5)
|
||||||
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p)
|
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
attn = q @ k.transpose(-2, -1) # (B, H, T, N, N)
|
attn = q @ k.transpose(-2, -1) # (B, H, T, N, N)
|
||||||
@ -330,7 +330,7 @@ class Nest(nn.Module):
|
|||||||
# Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the
|
# Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the
|
||||||
# number of blocks along edge of image
|
# number of blocks along edge of image
|
||||||
self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0]))
|
self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0]))
|
||||||
|
|
||||||
# Patch embedding
|
# Patch embedding
|
||||||
self.patch_embed = PatchEmbed(
|
self.patch_embed = PatchEmbed(
|
||||||
img_size=img_size,
|
img_size=img_size,
|
||||||
|
@ -130,7 +130,7 @@ class Attention(nn.Module):
|
|||||||
k, v = kv.unbind(0)
|
k, v = kv.unbind(0)
|
||||||
|
|
||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p)
|
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
attn = q @ k.transpose(-2, -1)
|
attn = q @ k.transpose(-2, -1)
|
||||||
|
@ -164,7 +164,7 @@ class WindowAttention(nn.Module):
|
|||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=attn_mask,
|
attn_mask=attn_mask,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -75,7 +75,7 @@ class LocallyGroupedAttn(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = F.scaled_dot_product_attention(
|
x = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
@ -172,7 +172,7 @@ class GlobalSubSampleAttn(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -95,7 +95,7 @@ class Attention(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q.contiguous(), k.contiguous(), v.contiguous(),
|
q.contiguous(), k.contiguous(), v.contiguous(),
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||||
|
@ -85,7 +85,7 @@ class Attention(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x = F.scaled_dot_product_attention(
|
x = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
@ -285,7 +285,7 @@ class ParallelScalingBlock(nn.Module):
|
|||||||
if self.fused_attn:
|
if self.fused_attn:
|
||||||
x_attn = F.scaled_dot_product_attention(
|
x_attn = F.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
@ -1151,7 +1151,7 @@ default_cfgs = generate_default_cfgs({
|
|||||||
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
|
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
||||||
|
|
||||||
# DINOv2 pretrained - https://arxiv.org/abs/2304.07193 (no classifier head, for fine-tune/features only)
|
# DINOv2 pretrained - https://arxiv.org/abs/2304.07193 (no classifier head, for fine-tune/features only)
|
||||||
'vit_small_patch14_dinov2.lvd142m': _cfg(
|
'vit_small_patch14_dinov2.lvd142m': _cfg(
|
||||||
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth',
|
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth',
|
||||||
@ -1471,7 +1471,7 @@ default_cfgs = generate_default_cfgs({
|
|||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
license='cc-by-nc-4.0',
|
license='cc-by-nc-4.0',
|
||||||
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
||||||
|
|
||||||
'vit_huge_patch14_224_ijepa.in1k': _cfg(
|
'vit_huge_patch14_224_ijepa.in1k': _cfg(
|
||||||
url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar',
|
url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar',
|
||||||
# hf_hub_id='timm/',
|
# hf_hub_id='timm/',
|
||||||
@ -2080,7 +2080,7 @@ def vit_giant_patch14_dinov2(pretrained=False, **kwargs) -> VisionTransformer:
|
|||||||
# With SwiGLUPacked, we need to set hidden_features = 2 * 4096 = 8192
|
# With SwiGLUPacked, we need to set hidden_features = 2 * 4096 = 8192
|
||||||
|
|
||||||
model_args = dict(
|
model_args = dict(
|
||||||
patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-5,
|
patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-5,
|
||||||
mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, img_size=518, act_layer=nn.SiLU
|
mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, img_size=518, act_layer=nn.SiLU
|
||||||
)
|
)
|
||||||
model = _create_vision_transformer(
|
model = _create_vision_transformer(
|
||||||
|
@ -71,7 +71,7 @@ class RelPosAttention(nn.Module):
|
|||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=attn_bias,
|
attn_mask=attn_bias,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
@ -168,7 +168,7 @@ class Attention(nn.Module):
|
|||||||
x = torch.nn.functional.scaled_dot_product_attention(
|
x = torch.nn.functional.scaled_dot_product_attention(
|
||||||
q, k, v,
|
q, k, v,
|
||||||
attn_mask=attn_bias,
|
attn_mask=attn_bias,
|
||||||
dropout_p=self.attn_drop.p,
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
q = q * self.scale
|
q = q * self.scale
|
||||||
|
Loading…
x
Reference in New Issue
Block a user