Fix #1726, dropout not used in NormMlpClassifierHead. Make dropout more consistent across both classifier heads (nn.Dropout)
parent
041de79f9e
commit
8db20dc240
|
@ -88,18 +88,20 @@ class ClassifierHead(nn.Module):
|
|||
drop_rate: Pre-classifier dropout rate.
|
||||
"""
|
||||
super(ClassifierHead, self).__init__()
|
||||
self.drop_rate = drop_rate
|
||||
self.in_features = in_features
|
||||
self.use_conv = use_conv
|
||||
self.input_fmt = input_fmt
|
||||
|
||||
self.global_pool, self.fc = create_classifier(
|
||||
global_pool, fc = create_classifier(
|
||||
in_features,
|
||||
num_classes,
|
||||
pool_type,
|
||||
use_conv=use_conv,
|
||||
input_fmt=input_fmt,
|
||||
)
|
||||
self.global_pool = global_pool
|
||||
self.drop = nn.Dropout(drop_rate)
|
||||
self.fc = fc
|
||||
self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity()
|
||||
|
||||
def reset(self, num_classes, pool_type=None):
|
||||
|
@ -122,8 +124,7 @@ class ClassifierHead(nn.Module):
|
|||
|
||||
def forward(self, x, pre_logits: bool = False):
|
||||
x = self.global_pool(x)
|
||||
if self.drop_rate:
|
||||
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
|
||||
x = self.drop(x)
|
||||
if pre_logits:
|
||||
return self.flatten(x)
|
||||
x = self.fc(x)
|
||||
|
@ -153,7 +154,6 @@ class NormMlpClassifierHead(nn.Module):
|
|||
act_layer: MLP activation layer type (only used if hidden_size is not None).
|
||||
"""
|
||||
super().__init__()
|
||||
self.drop_rate = drop_rate
|
||||
self.in_features = in_features
|
||||
self.hidden_size = hidden_size
|
||||
self.num_features = in_features
|
||||
|
@ -173,7 +173,7 @@ class NormMlpClassifierHead(nn.Module):
|
|||
self.num_features = hidden_size
|
||||
else:
|
||||
self.pre_logits = nn.Identity()
|
||||
self.drop = nn.Dropout(self.drop_rate)
|
||||
self.drop = nn.Dropout(drop_rate)
|
||||
self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def reset(self, num_classes, global_pool=None):
|
||||
|
@ -197,6 +197,7 @@ class NormMlpClassifierHead(nn.Module):
|
|||
x = self.norm(x)
|
||||
x = self.flatten(x)
|
||||
x = self.pre_logits(x)
|
||||
x = self.drop(x)
|
||||
if pre_logits:
|
||||
return x
|
||||
x = self.fc(x)
|
||||
|
|
Loading…
Reference in New Issue