mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
All ScaledStdConv and StdConv uses default to using F.layernorm so that they work with PyTorch XLA. eps value tweaking is a WIP.
This commit is contained in:
parent
54a6cca27a
commit
8e4ac3549f
@ -19,17 +19,22 @@ class StdConv2d(nn.Conv2d):
|
||||
"""
|
||||
def __init__(
|
||||
self, in_channel, out_channels, kernel_size, stride=1, padding=None, dilation=1,
|
||||
groups=1, bias=False, eps=1e-5):
|
||||
groups=1, bias=False, eps=1e-5, use_layernorm=True):
|
||||
if padding is None:
|
||||
padding = get_padding(kernel_size, stride, dilation)
|
||||
super().__init__(
|
||||
in_channel, out_channels, kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, groups=groups, bias=bias)
|
||||
self.eps = eps
|
||||
self.use_layernorm = use_layernorm
|
||||
|
||||
def get_weight(self):
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
if self.use_layernorm:
|
||||
# NOTE F.layer_norm is being used to compute (self.weight - mean) / (sqrt(var) + self.eps) in one op
|
||||
weight = F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
else:
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
return weight
|
||||
|
||||
def forward(self, x):
|
||||
@ -45,17 +50,22 @@ class StdConv2dSame(nn.Conv2d):
|
||||
"""
|
||||
def __init__(
|
||||
self, in_channel, out_channels, kernel_size, stride=1, padding='SAME', dilation=1,
|
||||
groups=1, bias=False, eps=1e-5):
|
||||
groups=1, bias=False, eps=1e-5, use_layernorm=True):
|
||||
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
|
||||
super().__init__(
|
||||
in_channel, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation,
|
||||
groups=groups, bias=bias)
|
||||
self.same_pad = is_dynamic
|
||||
self.eps = eps
|
||||
self.use_layernorm = use_layernorm
|
||||
|
||||
def get_weight(self):
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
if self.use_layernorm:
|
||||
# NOTE F.layer_norm is being used to compute (self.weight - mean) / (sqrt(var) + self.eps) in one op
|
||||
weight = F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
else:
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
return weight
|
||||
|
||||
def forward(self, x):
|
||||
@ -76,7 +86,7 @@ class ScaledStdConv2d(nn.Conv2d):
|
||||
|
||||
def __init__(
|
||||
self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
|
||||
bias=True, gamma=1.0, eps=1e-5, gain_init=1.0, use_layernorm=False):
|
||||
bias=True, gamma=1.0, eps=1e-5, gain_init=1.0, use_layernorm=True):
|
||||
if padding is None:
|
||||
padding = get_padding(kernel_size, stride, dilation)
|
||||
super().__init__(
|
||||
@ -84,16 +94,17 @@ class ScaledStdConv2d(nn.Conv2d):
|
||||
groups=groups, bias=bias)
|
||||
self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init))
|
||||
self.scale = gamma * self.weight[0].numel() ** -0.5 # gamma * 1 / sqrt(fan-in)
|
||||
self.eps = eps ** 2 if use_layernorm else eps
|
||||
self.eps = eps
|
||||
self.use_layernorm = use_layernorm # experimental, slightly faster/less GPU memory to hijack LN kernel
|
||||
|
||||
def get_weight(self):
|
||||
if self.use_layernorm:
|
||||
weight = self.scale * F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
# NOTE F.layer_norm is being used to compute (self.weight - mean) / (sqrt(var) + self.eps) in one op
|
||||
weight = F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
else:
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = self.scale * (self.weight - mean) / (std + self.eps)
|
||||
return self.gain * weight
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
return weight.mul_(self.gain * self.scale)
|
||||
|
||||
def forward(self, x):
|
||||
return F.conv2d(x, self.get_weight(), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
@ -110,7 +121,7 @@ class ScaledStdConv2dSame(nn.Conv2d):
|
||||
|
||||
def __init__(
|
||||
self, in_channels, out_channels, kernel_size, stride=1, padding='SAME', dilation=1, groups=1,
|
||||
bias=True, gamma=1.0, eps=1e-5, gain_init=1.0, use_layernorm=False):
|
||||
bias=True, gamma=1.0, eps=1e-5, gain_init=1.0, use_layernorm=True):
|
||||
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
|
||||
super().__init__(
|
||||
in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation,
|
||||
@ -118,24 +129,17 @@ class ScaledStdConv2dSame(nn.Conv2d):
|
||||
self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init))
|
||||
self.scale = gamma * self.weight[0].numel() ** -0.5
|
||||
self.same_pad = is_dynamic
|
||||
self.eps = eps ** 2 if use_layernorm else eps
|
||||
self.eps = eps
|
||||
self.use_layernorm = use_layernorm # experimental, slightly faster/less GPU memory to hijack LN kernel
|
||||
|
||||
# NOTE an alternate formulation to consider, closer to DeepMind Haiku impl but doesn't seem
|
||||
# to make much numerical difference (+/- .002 to .004) in top-1 during eval.
|
||||
# def get_weight(self):
|
||||
# var, mean = torch.var_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
# scale = torch.rsqrt((self.weight[0].numel() * var).clamp_(self.eps)) * self.gain
|
||||
# weight = (self.weight - mean) * scale
|
||||
# return self.gain * weight
|
||||
|
||||
def get_weight(self):
|
||||
if self.use_layernorm:
|
||||
weight = self.scale * F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
# NOTE F.layer_norm is being used to compute (self.weight - mean) / (sqrt(var) + self.eps) in one op
|
||||
weight = F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
|
||||
else:
|
||||
std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
||||
weight = self.scale * (self.weight - mean) / (std + self.eps)
|
||||
return self.gain * weight
|
||||
weight = (self.weight - mean) / (std + self.eps)
|
||||
return weight.mul_(self.gain * self.scale)
|
||||
|
||||
def forward(self, x):
|
||||
if self.same_pad:
|
||||
|
@ -166,6 +166,8 @@ class NfCfg:
|
||||
extra_conv: bool = False # extra 3x3 bottleneck convolution for NFNet models
|
||||
gamma_in_act: bool = False
|
||||
same_padding: bool = False
|
||||
std_conv_eps: float = 1e-5
|
||||
std_conv_ln: bool = True # use layer-norm impl to normalize in std-conv, works in PyTorch XLA, slightly faster
|
||||
skipinit: bool = False # disabled by default, non-trivial performance impact
|
||||
zero_init_fc: bool = False
|
||||
act_layer: str = 'silu'
|
||||
@ -482,10 +484,11 @@ class NormFreeNet(nn.Module):
|
||||
conv_layer = ScaledStdConv2dSame if cfg.same_padding else ScaledStdConv2d
|
||||
if cfg.gamma_in_act:
|
||||
act_layer = act_with_gamma(cfg.act_layer, gamma=_nonlin_gamma[cfg.act_layer])
|
||||
conv_layer = partial(conv_layer, eps=1e-4) # DM weights better with higher eps
|
||||
conv_layer = partial(conv_layer, eps=cfg.std_conv_eps, use_layernorm=cfg.std_conv_ln)
|
||||
else:
|
||||
act_layer = get_act_layer(cfg.act_layer)
|
||||
conv_layer = partial(conv_layer, gamma=_nonlin_gamma[cfg.act_layer])
|
||||
conv_layer = partial(
|
||||
conv_layer, gamma=_nonlin_gamma[cfg.act_layer], eps=cfg.std_conv_eps, use_layernorm=cfg.std_conv_ln)
|
||||
attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None
|
||||
|
||||
stem_chs = make_divisible((cfg.stem_chs or cfg.channels[0]) * cfg.width_factor, cfg.ch_div)
|
||||
|
@ -118,7 +118,7 @@ def _resnetv2(layers=(3, 4, 9), **kwargs):
|
||||
padding_same = kwargs.get('padding_same', True)
|
||||
if padding_same:
|
||||
stem_type = 'same'
|
||||
conv_layer = StdConv2dSame
|
||||
conv_layer = partial(StdConv2dSame, eps=1e-5)
|
||||
else:
|
||||
stem_type = ''
|
||||
conv_layer = StdConv2d
|
||||
|
Loading…
x
Reference in New Issue
Block a user