mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Exclude batchnorm and bias params from weight_decay by default
This commit is contained in:
parent
34cd76899f
commit
8fbd62a169
@ -2,32 +2,54 @@ from torch import optim as optim
|
||||
from optim import Nadam, AdaBound, RMSpropTF
|
||||
|
||||
|
||||
def create_optimizer(args, parameters):
|
||||
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
||||
decay = []
|
||||
no_decay = []
|
||||
for name, param in model.named_parameters():
|
||||
if not param.requires_grad:
|
||||
continue # frozen weights
|
||||
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
||||
no_decay.append(param)
|
||||
else:
|
||||
decay.append(param)
|
||||
return [
|
||||
{'params': no_decay, 'weight_decay': 0.},
|
||||
{'params': decay, 'weight_decay': weight_decay}]
|
||||
|
||||
|
||||
def create_optimizer(args, model, filter_bias_and_bn=True):
|
||||
weight_decay = args.weight_decay
|
||||
if weight_decay and filter_bias_and_bn:
|
||||
parameters = add_weight_decay(model, weight_decay)
|
||||
weight_decay = 0.
|
||||
else:
|
||||
parameters = model.parameters()
|
||||
|
||||
if args.opt.lower() == 'sgd':
|
||||
optimizer = optim.SGD(
|
||||
parameters, lr=args.lr,
|
||||
momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
|
||||
momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
||||
elif args.opt.lower() == 'adam':
|
||||
optimizer = optim.Adam(
|
||||
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
||||
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||
elif args.opt.lower() == 'nadam':
|
||||
optimizer = Nadam(
|
||||
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
||||
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||
elif args.opt.lower() == 'adabound':
|
||||
optimizer = AdaBound(
|
||||
parameters, lr=args.lr / 100, weight_decay=args.weight_decay, eps=args.opt_eps,
|
||||
parameters, lr=args.lr / 100, weight_decay=weight_decay, eps=args.opt_eps,
|
||||
final_lr=args.lr)
|
||||
elif args.opt.lower() == 'adadelta':
|
||||
optimizer = optim.Adadelta(
|
||||
parameters, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
||||
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||
elif args.opt.lower() == 'rmsprop':
|
||||
optimizer = optim.RMSprop(
|
||||
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
|
||||
momentum=args.momentum, weight_decay=args.weight_decay)
|
||||
momentum=args.momentum, weight_decay=weight_decay)
|
||||
elif args.opt.lower() == 'rmsproptf':
|
||||
optimizer = RMSpropTF(
|
||||
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
|
||||
momentum=args.momentum, weight_decay=args.weight_decay)
|
||||
momentum=args.momentum, weight_decay=weight_decay)
|
||||
else:
|
||||
assert False and "Invalid optimizer"
|
||||
raise ValueError
|
||||
|
Loading…
x
Reference in New Issue
Block a user