diff --git a/timm/models/byobnet.py b/timm/models/byobnet.py index f9b10755..e999dd7b 100644 --- a/timm/models/byobnet.py +++ b/timm/models/byobnet.py @@ -2355,7 +2355,7 @@ default_cfgs = generate_default_cfgs({ 'test_byobnet.r160_in1k': _cfgr( hf_hub_id='timm/', first_conv='stem.conv', - input_size=(3, 160, 160), crop_pct=0.875, pool_size=(5, 5), + input_size=(3, 160, 160), crop_pct=0.95, pool_size=(5, 5), ), }) diff --git a/timm/models/convnext.py b/timm/models/convnext.py index 612f8acd..004d8e83 100644 --- a/timm/models/convnext.py +++ b/timm/models/convnext.py @@ -953,14 +953,17 @@ default_cfgs = generate_default_cfgs({ input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), "test_convnext.r160_in1k": _cfg( - # hf_hub_id='timm/', - input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), "test_convnext2.r160_in1k": _cfg( - # hf_hub_id='timm/', - input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), "test_convnext3.r160_in1k": _cfg( - # hf_hub_id='timm/', - input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), }) diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index 57a77aaa..07bb250c 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -1804,19 +1804,18 @@ default_cfgs = generate_default_cfgs({ "test_efficientnet.r160_in1k": _cfg( hf_hub_id='timm/', - input_size=(3, 160, 160), pool_size=(5, 5)), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_efficientnet_ln.r160_in1k": _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), "test_efficientnet_gn.r160_in1k": _cfg( hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), - input_size=(3, 160, 160), pool_size=(5, 5)), - "test_efficientnet_ln.r160_in1k": _cfg( - #hf_hub_id='timm/', - mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), - input_size=(3, 160, 160), pool_size=(5, 5)), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), "test_efficientnet_evos.r160_in1k": _cfg( - #hf_hub_id='timm/', + hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), - input_size=(3, 160, 160), pool_size=(5, 5)), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), }) diff --git a/timm/models/nfnet.py b/timm/models/nfnet.py index 42aaee22..2aa27564 100644 --- a/timm/models/nfnet.py +++ b/timm/models/nfnet.py @@ -736,9 +736,9 @@ default_cfgs = generate_default_cfgs({ 'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv'), 'test_nfnet.r160_in1k': _dcfg( - # hf_hub_id='timm/', + hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), - crop_pct=0.875, input_size=(3, 160, 160), pool_size=(5, 5)), + crop_pct=0.95, input_size=(3, 160, 160), pool_size=(5, 5)), }) diff --git a/timm/models/resnet.py b/timm/models/resnet.py index 4bda521d..432b1182 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -1304,8 +1304,8 @@ default_cfgs = generate_default_cfgs({ first_conv='conv1.0'), 'test_resnet.r160_in1k': _cfg( - #hf_hub_id='timm/', - mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, input_size=(3, 160, 160), pool_size=(5, 5), first_conv='conv1.0'), }) diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index 2a574fe6..2c9c7f4a 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -2014,13 +2014,13 @@ default_cfgs = { 'test_vit.r160_in1k': _cfg( hf_hub_id='timm/', - input_size=(3, 160, 160), crop_pct=0.875), + input_size=(3, 160, 160), crop_pct=0.95), 'test_vit2.r160_in1k': _cfg( - #hf_hub_id='timm/', - input_size=(3, 160, 160), crop_pct=0.875), + hf_hub_id='timm/', + input_size=(3, 160, 160), crop_pct=0.95), 'test_vit3.r160_in1k': _cfg( #hf_hub_id='timm/', - input_size=(3, 160, 160), crop_pct=0.875), + input_size=(3, 160, 160), crop_pct=0.95), } _quick_gelu_cfgs = [ @@ -3217,21 +3217,23 @@ def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visio def test_vit(pretrained: bool = False, **kwargs) -> VisionTransformer: """ ViT Test """ - model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3) + model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3, dynamic_img_size=True) model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs)) return model +@register_model def test_vit2(pretrained: bool = False, **kwargs) -> VisionTransformer: """ ViT Test """ model_args = dict( patch_size=16, embed_dim=64, depth=8, num_heads=2, mlp_ratio=3, - class_token=False, reg_tokens=1, global_pool='avg', init_values=1e-5) + class_token=False, reg_tokens=1, global_pool='avg', init_values=1e-5, dynamic_img_size=True) model = _create_vision_transformer('test_vit2', pretrained=pretrained, **dict(model_args, **kwargs)) return model +@register_model def test_vit3(pretrained: bool = False, **kwargs) -> VisionTransformer: """ ViT Test """