Add weights for new tiny test models
parent
a2f539f055
commit
9067be6a30
|
@ -2355,7 +2355,7 @@ default_cfgs = generate_default_cfgs({
|
||||||
'test_byobnet.r160_in1k': _cfgr(
|
'test_byobnet.r160_in1k': _cfgr(
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
first_conv='stem.conv',
|
first_conv='stem.conv',
|
||||||
input_size=(3, 160, 160), crop_pct=0.875, pool_size=(5, 5),
|
input_size=(3, 160, 160), crop_pct=0.95, pool_size=(5, 5),
|
||||||
),
|
),
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
|
@ -953,14 +953,17 @@ default_cfgs = generate_default_cfgs({
|
||||||
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
|
||||||
|
|
||||||
"test_convnext.r160_in1k": _cfg(
|
"test_convnext.r160_in1k": _cfg(
|
||||||
# hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
"test_convnext2.r160_in1k": _cfg(
|
"test_convnext2.r160_in1k": _cfg(
|
||||||
# hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
"test_convnext3.r160_in1k": _cfg(
|
"test_convnext3.r160_in1k": _cfg(
|
||||||
# hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
|
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
|
@ -1804,19 +1804,18 @@ default_cfgs = generate_default_cfgs({
|
||||||
|
|
||||||
"test_efficientnet.r160_in1k": _cfg(
|
"test_efficientnet.r160_in1k": _cfg(
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5)),
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
|
"test_efficientnet_ln.r160_in1k": _cfg(
|
||||||
|
hf_hub_id='timm/',
|
||||||
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
"test_efficientnet_gn.r160_in1k": _cfg(
|
"test_efficientnet_gn.r160_in1k": _cfg(
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5)),
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
"test_efficientnet_ln.r160_in1k": _cfg(
|
|
||||||
#hf_hub_id='timm/',
|
|
||||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5)),
|
|
||||||
"test_efficientnet_evos.r160_in1k": _cfg(
|
"test_efficientnet_evos.r160_in1k": _cfg(
|
||||||
#hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5)),
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95),
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -736,9 +736,9 @@ default_cfgs = generate_default_cfgs({
|
||||||
'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv'),
|
'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv'),
|
||||||
|
|
||||||
'test_nfnet.r160_in1k': _dcfg(
|
'test_nfnet.r160_in1k': _dcfg(
|
||||||
# hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
crop_pct=0.875, input_size=(3, 160, 160), pool_size=(5, 5)),
|
crop_pct=0.95, input_size=(3, 160, 160), pool_size=(5, 5)),
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1304,8 +1304,8 @@ default_cfgs = generate_default_cfgs({
|
||||||
first_conv='conv1.0'),
|
first_conv='conv1.0'),
|
||||||
|
|
||||||
'test_resnet.r160_in1k': _cfg(
|
'test_resnet.r160_in1k': _cfg(
|
||||||
#hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95,
|
||||||
input_size=(3, 160, 160), pool_size=(5, 5), first_conv='conv1.0'),
|
input_size=(3, 160, 160), pool_size=(5, 5), first_conv='conv1.0'),
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
|
@ -2014,13 +2014,13 @@ default_cfgs = {
|
||||||
|
|
||||||
'test_vit.r160_in1k': _cfg(
|
'test_vit.r160_in1k': _cfg(
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), crop_pct=0.875),
|
input_size=(3, 160, 160), crop_pct=0.95),
|
||||||
'test_vit2.r160_in1k': _cfg(
|
'test_vit2.r160_in1k': _cfg(
|
||||||
#hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), crop_pct=0.875),
|
input_size=(3, 160, 160), crop_pct=0.95),
|
||||||
'test_vit3.r160_in1k': _cfg(
|
'test_vit3.r160_in1k': _cfg(
|
||||||
#hf_hub_id='timm/',
|
#hf_hub_id='timm/',
|
||||||
input_size=(3, 160, 160), crop_pct=0.875),
|
input_size=(3, 160, 160), crop_pct=0.95),
|
||||||
}
|
}
|
||||||
|
|
||||||
_quick_gelu_cfgs = [
|
_quick_gelu_cfgs = [
|
||||||
|
@ -3217,21 +3217,23 @@ def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visio
|
||||||
def test_vit(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
def test_vit(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||||
""" ViT Test
|
""" ViT Test
|
||||||
"""
|
"""
|
||||||
model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3)
|
model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3, dynamic_img_size=True)
|
||||||
model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs))
|
model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
def test_vit2(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
def test_vit2(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||||
""" ViT Test
|
""" ViT Test
|
||||||
"""
|
"""
|
||||||
model_args = dict(
|
model_args = dict(
|
||||||
patch_size=16, embed_dim=64, depth=8, num_heads=2, mlp_ratio=3,
|
patch_size=16, embed_dim=64, depth=8, num_heads=2, mlp_ratio=3,
|
||||||
class_token=False, reg_tokens=1, global_pool='avg', init_values=1e-5)
|
class_token=False, reg_tokens=1, global_pool='avg', init_values=1e-5, dynamic_img_size=True)
|
||||||
model = _create_vision_transformer('test_vit2', pretrained=pretrained, **dict(model_args, **kwargs))
|
model = _create_vision_transformer('test_vit2', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
def test_vit3(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
def test_vit3(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
||||||
""" ViT Test
|
""" ViT Test
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue