mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Update README.md
This commit is contained in:
parent
cec70b6779
commit
9558a7f8eb
42
README.md
42
README.md
@ -26,6 +26,48 @@
|
||||
* The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license.
|
||||
* Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version.
|
||||
|
||||
### July 26, 2024
|
||||
* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
|
||||
|
||||
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|
||||
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
|
||||
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 |
|
||||
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 |
|
||||
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 |
|
||||
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 |
|
||||
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 |
|
||||
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 |
|
||||
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 |
|
||||
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 |
|
||||
|
||||
* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines)
|
||||
|
||||
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|
||||
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
|
||||
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 |
|
||||
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 |
|
||||
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 |
|
||||
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 |
|
||||
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 |
|
||||
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 |
|
||||
|
||||
* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
|
||||
* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints
|
||||
* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
|
||||
* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k
|
||||
|
||||
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct|
|
||||
|----------------------------|------|--------|------|--------|-----------|--------|--------|
|
||||
|test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 |
|
||||
|test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 |
|
||||
|test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 |
|
||||
|test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 |
|
||||
|test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 |
|
||||
|test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 |
|
||||
|
||||
* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery)
|
||||
* Other misc fixes
|
||||
|
||||
### June 24, 2024
|
||||
* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user