mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Further reduce atol for model comparison, move python 3.11 + torch 2.2 -> python 3.12 + torch 2.4.1
This commit is contained in:
parent
fde6719403
commit
95907e69c2
6
.github/workflows/tests.yml
vendored
6
.github/workflows/tests.yml
vendored
@ -16,11 +16,11 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python: ['3.10', '3.11']
|
||||
torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.1.0', vision: '0.16.0'}]
|
||||
python: ['3.10', '3.12']
|
||||
torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.4.1', vision: '0.19.1'}]
|
||||
testmarker: ['-k "not test_models"', '-m base', '-m cfg', '-m torchscript', '-m features', '-m fxforward', '-m fxbackward']
|
||||
exclude:
|
||||
- python: '3.11'
|
||||
- python: '3.12'
|
||||
torch: {base: '1.13.0', vision: '0.14.0'}
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
|
@ -146,18 +146,18 @@ def test_model_inference(model_name, batch_size):
|
||||
rand_output = model(rand_tensors['input'])
|
||||
rand_features = model.forward_features(rand_tensors['input'])
|
||||
rand_pre_logits = model.forward_head(rand_features, pre_logits=True)
|
||||
assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-4)
|
||||
assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-4)
|
||||
assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-4)
|
||||
|
||||
def _test_owl(owl_input):
|
||||
owl_output = model(owl_input)
|
||||
owl_features = model.forward_features(owl_input)
|
||||
owl_pre_logits = model.forward_head(owl_features.clone(), pre_logits=True)
|
||||
assert owl_output.softmax(1).argmax(1) == 24 # owl
|
||||
assert torch.allclose(owl_output, owl_tensors['output'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(owl_features, owl_tensors['features'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(owl_output, owl_tensors['output'], rtol=1e-3, atol=1e-4)
|
||||
assert torch.allclose(owl_features, owl_tensors['features'], rtol=1e-3, atol=1e-4)
|
||||
assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=1e-3, atol=1e-4)
|
||||
|
||||
_test_owl(owl_tensors['input']) # test with original pp owl tensor
|
||||
_test_owl(pp(test_owl).unsqueeze(0)) # re-process from original jpg
|
||||
|
Loading…
x
Reference in New Issue
Block a user