diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 1279b219..9cc2243c 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -16,11 +16,11 @@ jobs: strategy: matrix: os: [ubuntu-latest] - python: ['3.10', '3.11'] - torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.1.0', vision: '0.16.0'}] + python: ['3.10', '3.12'] + torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.4.1', vision: '0.19.1'}] testmarker: ['-k "not test_models"', '-m base', '-m cfg', '-m torchscript', '-m features', '-m fxforward', '-m fxbackward'] exclude: - - python: '3.11' + - python: '3.12' torch: {base: '1.13.0', vision: '0.14.0'} runs-on: ${{ matrix.os }} diff --git a/tests/test_models.py b/tests/test_models.py index 02cf7707..f2a1d7e4 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -146,18 +146,18 @@ def test_model_inference(model_name, batch_size): rand_output = model(rand_tensors['input']) rand_features = model.forward_features(rand_tensors['input']) rand_pre_logits = model.forward_head(rand_features, pre_logits=True) - assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-5) - assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-5) - assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-5) + assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-4) + assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-4) + assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-4) def _test_owl(owl_input): owl_output = model(owl_input) owl_features = model.forward_features(owl_input) owl_pre_logits = model.forward_head(owl_features.clone(), pre_logits=True) assert owl_output.softmax(1).argmax(1) == 24 # owl - assert torch.allclose(owl_output, owl_tensors['output'], rtol=1e-3, atol=1e-5) - assert torch.allclose(owl_features, owl_tensors['features'], rtol=1e-3, atol=1e-5) - assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=1e-3, atol=1e-5) + assert torch.allclose(owl_output, owl_tensors['output'], rtol=1e-3, atol=1e-4) + assert torch.allclose(owl_features, owl_tensors['features'], rtol=1e-3, atol=1e-4) + assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=1e-3, atol=1e-4) _test_owl(owl_tensors['input']) # test with original pp owl tensor _test_owl(pp(test_owl).unsqueeze(0)) # re-process from original jpg