Add EdgeTPU models to sotabench, remove some unicode chars from model names
parent
9ec6824bab
commit
9816ca3ab4
17
sotabench.py
17
sotabench.py
|
@ -1,6 +1,7 @@
|
|||
from torchbench.image_classification import ImageNet
|
||||
from timm import create_model, list_models
|
||||
from timm.data import resolve_data_config, create_transform
|
||||
import os
|
||||
|
||||
NUM_GPU = 1
|
||||
BATCH_SIZE = 256 * NUM_GPU
|
||||
|
@ -86,13 +87,13 @@ model_map = dict(
|
|||
gluon_xception65=_attrib(
|
||||
paper_model_name='Modified Aligned Xception', paper_arxiv_id='1802.02611', batch_size=BATCH_SIZE//2),
|
||||
ig_resnext101_32x8d=_attrib(
|
||||
paper_model_name='ResNeXt-101 32×8d', paper_arxiv_id='1805.00932'),
|
||||
paper_model_name='ResNeXt-101 32x8d', paper_arxiv_id='1805.00932'),
|
||||
ig_resnext101_32x16d=_attrib(
|
||||
paper_model_name='ResNeXt-101 32×16d', paper_arxiv_id='1805.00932'),
|
||||
paper_model_name='ResNeXt-101 32x16d', paper_arxiv_id='1805.00932'),
|
||||
ig_resnext101_32x32d=_attrib(
|
||||
paper_model_name='ResNeXt-101 32×32d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//2),
|
||||
paper_model_name='ResNeXt-101 32x32d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//2),
|
||||
ig_resnext101_32x48d=_attrib(
|
||||
paper_model_name='ResNeXt-101 32×48d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//4),
|
||||
paper_model_name='ResNeXt-101 32x48d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//4),
|
||||
inception_resnet_v2=_attrib(
|
||||
paper_model_name='Inception ResNet V2', paper_arxiv_id='1602.07261'),
|
||||
#inception_v3=dict(paper_model_name='Inception V3', paper_arxiv_id=), # same weights as torchvision
|
||||
|
@ -167,6 +168,12 @@ model_map = dict(
|
|||
paper_model_name='EfficientNet-B6', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//8),
|
||||
tf_efficientnet_b7=_attrib(
|
||||
paper_model_name='EfficientNet-B7', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//8),
|
||||
tf_efficientnet_es=_attrib(
|
||||
paper_model_name='EfficientNet-EdgeTPU-S', paper_arxiv_id='1905.11946'),
|
||||
tf_efficientnet_em=_attrib(
|
||||
paper_model_name='EfficientNet-EdgeTPU-M', paper_arxiv_id='1905.11946'),
|
||||
tf_efficientnet_el=_attrib(
|
||||
paper_model_name='EfficientNet-EdgeTPU-L', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//2),
|
||||
tf_inception_v3=_attrib(
|
||||
paper_model_name='Inception V3', paper_arxiv_id='1512.00567'),
|
||||
tf_mixnet_l=_attrib(
|
||||
|
@ -208,7 +215,7 @@ for model_name in model_names:
|
|||
input_transform=input_transform,
|
||||
batch_size=model_map[model_name]['batch_size'],
|
||||
num_gpu=NUM_GPU,
|
||||
#data_root=DATA_ROOT
|
||||
data_root=os.environ.get('IMAGENET_DIR', './imagenet')
|
||||
)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue