diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index 56bd3707..4e05549d 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -1238,9 +1238,17 @@ default_cfgs = generate_default_cfgs({ url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth', hf_hub_id='timm/'), - 'mobilenet_100.untrained': _cfg(), - 'mobilenet_100h.untrained': _cfg(), - 'mobilenet_125.untrained': _cfg(), + 'mobilenetv1_100.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, + ), + 'mobilenetv1_100h.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, + ), + 'mobilenetv1_125.untrained': _cfg(), 'mobilenetv2_035.untrained': _cfg(), 'mobilenetv2_050.lamb_in1k': _cfg( @@ -1275,22 +1283,27 @@ default_cfgs = generate_default_cfgs({ 'efficientnet_b0.ra_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth', hf_hub_id='timm/'), + 'efficientnet_b0.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0 + ), 'efficientnet_b1.ft_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', hf_hub_id='timm/', - test_input_size=(3, 256, 256), crop_pct=1.0), + test_input_size=(3, 256, 256), test_crop_pct=1.0), 'efficientnet_b2.ra_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', hf_hub_id='timm/', - input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), crop_pct=1.0), + input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'efficientnet_b3.ra2_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth', hf_hub_id='timm/', - input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), + input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0), 'efficientnet_b4.ra2_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth', hf_hub_id='timm/', - input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), crop_pct=1.0), + input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), 'efficientnet_b5.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, crop_mode='squash'), @@ -1826,23 +1839,23 @@ def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet: @register_model -def mobilenet_100(pretrained=False, **kwargs) -> EfficientNet: +def mobilenetv1_100(pretrained=False, **kwargs) -> EfficientNet: """ MobileNet V1 """ - model = _gen_mobilenet_v1('mobilenet_100', 1.0, pretrained=pretrained, **kwargs) + model = _gen_mobilenet_v1('mobilenetv1_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model -def mobilenet_100h(pretrained=False, **kwargs) -> EfficientNet: +def mobilenetv1_100h(pretrained=False, **kwargs) -> EfficientNet: """ MobileNet V1 """ - model = _gen_mobilenet_v1('mobilenet_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs) + model = _gen_mobilenet_v1('mobilenetv1_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs) return model @register_model -def mobilenet_125(pretrained=False, **kwargs) -> EfficientNet: +def mobilenetv1_125(pretrained=False, **kwargs) -> EfficientNet: """ MobileNet V1 """ - model = _gen_mobilenet_v1('mobilenet_125', 1.25, pretrained=pretrained, **kwargs) + model = _gen_mobilenet_v1('mobilenetv1_125', 1.25, pretrained=pretrained, **kwargs) return model diff --git a/timm/models/mobilenetv3.py b/timm/models/mobilenetv3.py index ec820aec..2b102cee 100644 --- a/timm/models/mobilenetv3.py +++ b/timm/models/mobilenetv3.py @@ -1018,6 +1018,10 @@ default_cfgs = generate_default_cfgs({ input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium.ix_e550_r256_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), @@ -1029,6 +1033,11 @@ default_cfgs = generate_default_cfgs({ 'mobilenetv4_hybrid_medium.e500_r224_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.e200_r256_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_large.ix_e600_r384_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), @@ -1045,12 +1054,21 @@ default_cfgs = generate_default_cfgs({ 'mobilenetv4_conv_blur_medium.e500_r224_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), - 'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg( - # hf_hub_id='timm/', + 'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), + crop_pct=0.95, test_input_size=(3, 544, 544), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), - crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), - 'mobilenetv4_conv_blur_large.e600_r384_in1k': _cfg( - # hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e230_r384_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), 'mobilenetv4_hybrid_medium_075.untrained': _cfg( @@ -1271,13 +1289,6 @@ def mobilenetv4_conv_aa_large(pretrained: bool = False, **kwargs) -> MobileNetV3 return model -@register_model -def mobilenetv4_conv_blur_large(pretrained: bool = False, **kwargs) -> MobileNetV3: - """ MobileNet V4 Conv w/ Blur AA """ - model = _gen_mobilenet_v4('mobilenetv4_conv_blur_large', 1.0, pretrained=pretrained, aa_layer='blurpc', **kwargs) - return model - - @register_model def mobilenetv4_hybrid_medium_075(pretrained: bool = False, **kwargs) -> MobileNetV3: """ MobileNet V4 Hybrid """