mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add latest mobilenetv4 and baseline updates for mobilenetv1 and efficientnet_b0 weights
This commit is contained in:
parent
7b6a406474
commit
9aa2930760
@ -1238,9 +1238,17 @@ default_cfgs = generate_default_cfgs({
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth',
|
||||
hf_hub_id='timm/'),
|
||||
|
||||
'mobilenet_100.untrained': _cfg(),
|
||||
'mobilenet_100h.untrained': _cfg(),
|
||||
'mobilenet_125.untrained': _cfg(),
|
||||
'mobilenetv1_100.ra4_e3600_r224_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
|
||||
test_input_size=(3, 256, 256), test_crop_pct=0.95,
|
||||
),
|
||||
'mobilenetv1_100h.ra4_e3600_r224_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
|
||||
test_input_size=(3, 256, 256), test_crop_pct=0.95,
|
||||
),
|
||||
'mobilenetv1_125.untrained': _cfg(),
|
||||
|
||||
'mobilenetv2_035.untrained': _cfg(),
|
||||
'mobilenetv2_050.lamb_in1k': _cfg(
|
||||
@ -1275,22 +1283,27 @@ default_cfgs = generate_default_cfgs({
|
||||
'efficientnet_b0.ra_in1k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth',
|
||||
hf_hub_id='timm/'),
|
||||
'efficientnet_b0.ra4_e3600_r224_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
|
||||
crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0
|
||||
),
|
||||
'efficientnet_b1.ft_in1k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
|
||||
hf_hub_id='timm/',
|
||||
test_input_size=(3, 256, 256), crop_pct=1.0),
|
||||
test_input_size=(3, 256, 256), test_crop_pct=1.0),
|
||||
'efficientnet_b2.ra_in1k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth',
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), crop_pct=1.0),
|
||||
input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
||||
'efficientnet_b3.ra2_in1k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth',
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0),
|
||||
input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0),
|
||||
'efficientnet_b4.ra2_in1k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth',
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), crop_pct=1.0),
|
||||
input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0),
|
||||
'efficientnet_b5.sw_in12k_ft_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, crop_mode='squash'),
|
||||
@ -1826,23 +1839,23 @@ def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet:
|
||||
|
||||
|
||||
@register_model
|
||||
def mobilenet_100(pretrained=False, **kwargs) -> EfficientNet:
|
||||
def mobilenetv1_100(pretrained=False, **kwargs) -> EfficientNet:
|
||||
""" MobileNet V1 """
|
||||
model = _gen_mobilenet_v1('mobilenet_100', 1.0, pretrained=pretrained, **kwargs)
|
||||
model = _gen_mobilenet_v1('mobilenetv1_100', 1.0, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mobilenet_100h(pretrained=False, **kwargs) -> EfficientNet:
|
||||
def mobilenetv1_100h(pretrained=False, **kwargs) -> EfficientNet:
|
||||
""" MobileNet V1 """
|
||||
model = _gen_mobilenet_v1('mobilenet_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs)
|
||||
model = _gen_mobilenet_v1('mobilenetv1_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mobilenet_125(pretrained=False, **kwargs) -> EfficientNet:
|
||||
def mobilenetv1_125(pretrained=False, **kwargs) -> EfficientNet:
|
||||
""" MobileNet V1 """
|
||||
model = _gen_mobilenet_v1('mobilenet_125', 1.25, pretrained=pretrained, **kwargs)
|
||||
model = _gen_mobilenet_v1('mobilenetv1_125', 1.25, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
|
@ -1018,6 +1018,10 @@ default_cfgs = generate_default_cfgs({
|
||||
input_size=(3, 256, 256), pool_size=(8, 8),
|
||||
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
|
||||
'mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 256, 256), pool_size=(12, 12),
|
||||
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_hybrid_medium.ix_e550_r256_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 256, 256), pool_size=(8, 8),
|
||||
@ -1029,6 +1033,11 @@ default_cfgs = generate_default_cfgs({
|
||||
'mobilenetv4_hybrid_medium.e500_r224_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_hybrid_medium.e200_r256_in12k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
num_classes=11821,
|
||||
input_size=(3, 256, 256), pool_size=(12, 12),
|
||||
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_hybrid_large.ix_e600_r384_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 384, 384), pool_size=(12, 12),
|
||||
@ -1045,12 +1054,21 @@ default_cfgs = generate_default_cfgs({
|
||||
'mobilenetv4_conv_blur_medium.e500_r224_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg(
|
||||
# hf_hub_id='timm/',
|
||||
'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 448, 448), pool_size=(14, 14),
|
||||
crop_pct=0.95, test_input_size=(3, 544, 544), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 384, 384), pool_size=(12, 12),
|
||||
crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_conv_blur_large.e600_r384_in1k': _cfg(
|
||||
# hf_hub_id='timm/',
|
||||
crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
input_size=(3, 384, 384), pool_size=(12, 12),
|
||||
crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_conv_aa_large.e230_r384_in12k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
num_classes=11821,
|
||||
input_size=(3, 384, 384), pool_size=(12, 12),
|
||||
crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'),
|
||||
'mobilenetv4_hybrid_medium_075.untrained': _cfg(
|
||||
@ -1271,13 +1289,6 @@ def mobilenetv4_conv_aa_large(pretrained: bool = False, **kwargs) -> MobileNetV3
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mobilenetv4_conv_blur_large(pretrained: bool = False, **kwargs) -> MobileNetV3:
|
||||
""" MobileNet V4 Conv w/ Blur AA """
|
||||
model = _gen_mobilenet_v4('mobilenetv4_conv_blur_large', 1.0, pretrained=pretrained, aa_layer='blurpc', **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mobilenetv4_hybrid_medium_075(pretrained: bool = False, **kwargs) -> MobileNetV3:
|
||||
""" MobileNet V4 Hybrid """
|
||||
|
Loading…
x
Reference in New Issue
Block a user