Add forward_intermediates support for xcit, cait, and volo.
parent
e741370e2b
commit
9b9a356a04
|
@ -165,6 +165,7 @@ class FeatureHooks:
|
|||
):
|
||||
# setup feature hooks
|
||||
self._feature_outputs = defaultdict(OrderedDict)
|
||||
self._handles = []
|
||||
modules = {k: v for k, v in named_modules}
|
||||
for i, h in enumerate(hooks):
|
||||
hook_name = h['module']
|
||||
|
@ -173,11 +174,12 @@ class FeatureHooks:
|
|||
hook_fn = partial(self._collect_output_hook, hook_id)
|
||||
hook_type = h.get('hook_type', default_hook_type)
|
||||
if hook_type == 'forward_pre':
|
||||
m.register_forward_pre_hook(hook_fn)
|
||||
handle = m.register_forward_pre_hook(hook_fn)
|
||||
elif hook_type == 'forward':
|
||||
m.register_forward_hook(hook_fn)
|
||||
handle = m.register_forward_hook(hook_fn)
|
||||
else:
|
||||
assert False, "Unsupported hook type"
|
||||
self._handles.append(handle)
|
||||
|
||||
def _collect_output_hook(self, hook_id, *args):
|
||||
x = args[-1] # tensor we want is last argument, output for fwd, input for fwd_pre
|
||||
|
|
|
@ -9,6 +9,7 @@ Modifications and additions for timm hacked together by / Copyright 2021, Ross W
|
|||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
# All rights reserved.
|
||||
from functools import partial
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
@ -16,6 +17,7 @@ import torch.nn as nn
|
|||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
|
@ -246,8 +248,8 @@ class Cait(nn.Module):
|
|||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
num_patches = self.patch_embed.num_patches
|
||||
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
||||
|
@ -268,6 +270,7 @@ class Cait(nn.Module):
|
|||
mlp_block=mlp_block,
|
||||
init_values=init_values,
|
||||
) for i in range(depth)])
|
||||
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
|
||||
|
||||
self.blocks_token_only = nn.ModuleList([block_layers_token(
|
||||
dim=embed_dim,
|
||||
|
@ -283,7 +286,6 @@ class Cait(nn.Module):
|
|||
|
||||
self.norm = norm_layer(embed_dim)
|
||||
|
||||
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
|
||||
self.head_drop = nn.Dropout(drop_rate)
|
||||
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
|
@ -336,6 +338,80 @@ class Cait(nn.Module):
|
|||
self.global_pool = global_pool
|
||||
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = True,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to all intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
"""
|
||||
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
|
||||
reshape = output_fmt == 'NCHW'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
||||
|
||||
# forward pass
|
||||
B, _, height, width = x.shape
|
||||
x = self.patch_embed(x)
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
blocks = self.blocks
|
||||
else:
|
||||
blocks = self.blocks[:max_index + 1]
|
||||
for i, blk in enumerate(blocks):
|
||||
x = blk(x)
|
||||
if i in take_indices:
|
||||
# normalize intermediates with final norm layer if enabled
|
||||
intermediates.append(self.norm(x) if norm else x)
|
||||
|
||||
# process intermediates
|
||||
if reshape:
|
||||
# reshape to BCHW output format
|
||||
H, W = self.patch_embed.dynamic_feat_size((height, width))
|
||||
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
# NOTE not supporting return of class tokens
|
||||
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
|
||||
for i, blk in enumerate(self.blocks_token_only):
|
||||
cls_tokens = blk(x, cls_tokens)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
n: Union[int, List[int], Tuple[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), n)
|
||||
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.blocks_token_only = nn.ModuleList() # prune token blocks with head
|
||||
self.head = nn.Identity()
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
x = x + self.pos_embed
|
||||
|
@ -373,14 +449,13 @@ def checkpoint_filter_fn(state_dict, model=None):
|
|||
|
||||
|
||||
def _create_cait(variant, pretrained=False, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
||||
|
||||
out_indices = kwargs.pop('out_indices', 3)
|
||||
model = build_model_with_cfg(
|
||||
Cait,
|
||||
variant,
|
||||
pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
|
|
@ -20,6 +20,7 @@ Modifications and additions for timm by / Copyright 2022, Ross Wightman
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -28,8 +29,9 @@ import torch.nn.functional as F
|
|||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_
|
||||
from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_, use_fused_attn
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
__all__ = ['VOLO'] # model_registry will add each entrypoint fn to this
|
||||
|
@ -119,24 +121,24 @@ class Outlooker(nn.Module):
|
|||
qkv_bias=qkv_bias,
|
||||
attn_drop=attn_drop,
|
||||
)
|
||||
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
hidden_features=int(dim * mlp_ratio),
|
||||
act_layer=act_layer,
|
||||
)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
x = x + self.drop_path1(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
fused_attn: torch.jit.Final[bool]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -150,6 +152,7 @@ class Attention(nn.Module):
|
|||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
self.fused_attn = use_fused_attn()
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
|
@ -162,11 +165,19 @@ class Attention(nn.Module):
|
|||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
if self.fused_attn:
|
||||
x = F.scaled_dot_product_attention(
|
||||
q, k, v,
|
||||
dropout_p=self.attn_drop.p if self.training else 0.,
|
||||
)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
x = attn @ v
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, H, W, C)
|
||||
x = x.transpose(1, 2).reshape(B, H, W, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
|
||||
|
@ -189,17 +200,15 @@ class Transformer(nn.Module):
|
|||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop)
|
||||
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
x = x + self.drop_path1(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
|
@ -234,8 +243,9 @@ class ClassAttention(nn.Module):
|
|||
|
||||
kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
k, v = kv.unbind(0)
|
||||
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim)
|
||||
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
||||
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) * self.scale
|
||||
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
|
@ -270,21 +280,21 @@ class ClassBlock(nn.Module):
|
|||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
# NOTE: drop path for stochastic depth
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
hidden_features=int(dim * mlp_ratio),
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
cls_embed = x[:, :1]
|
||||
cls_embed = cls_embed + self.drop_path(self.attn(self.norm1(x)))
|
||||
cls_embed = cls_embed + self.drop_path(self.mlp(self.norm2(cls_embed)))
|
||||
cls_embed = cls_embed + self.drop_path1(self.attn(self.norm1(x)))
|
||||
cls_embed = cls_embed + self.drop_path2(self.mlp(self.norm2(cls_embed)))
|
||||
return torch.cat([cls_embed, x[:, 1:]], dim=1)
|
||||
|
||||
|
||||
|
@ -495,6 +505,7 @@ class VOLO(nn.Module):
|
|||
hidden_dim=stem_hidden_dim,
|
||||
embed_dim=embed_dims[0],
|
||||
)
|
||||
r = patch_size
|
||||
|
||||
# inital positional encoding, we add positional encoding after outlooker blocks
|
||||
patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale)
|
||||
|
@ -502,7 +513,10 @@ class VOLO(nn.Module):
|
|||
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
||||
|
||||
# set the main block in network
|
||||
self.stage_ends = []
|
||||
self.feature_info = []
|
||||
network = []
|
||||
block_idx = 0
|
||||
for i in range(len(layers)):
|
||||
if outlook_attention[i]:
|
||||
# stage 1
|
||||
|
@ -517,7 +531,6 @@ class VOLO(nn.Module):
|
|||
attn_drop=attn_drop_rate,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
network.append(stage)
|
||||
else:
|
||||
# stage 2
|
||||
stage = transformer_blocks(
|
||||
|
@ -532,11 +545,15 @@ class VOLO(nn.Module):
|
|||
attn_drop=attn_drop_rate,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
network.append(stage)
|
||||
|
||||
network.append(stage)
|
||||
self.stage_ends.append(block_idx)
|
||||
self.feature_info.append(dict(num_chs=embed_dims[i], reduction=r, module=f'network.{block_idx}'))
|
||||
block_idx += 1
|
||||
if downsamples[i]:
|
||||
# downsampling between two stages
|
||||
network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2))
|
||||
r *= 2
|
||||
block_idx += 1
|
||||
|
||||
self.network = nn.ModuleList(network)
|
||||
|
||||
|
@ -691,6 +708,83 @@ class VOLO(nn.Module):
|
|||
# return these: 1. class token, 2. classes from all feature tokens, 3. bounding box
|
||||
return x_cls, x_aux, (bbx1, bby1, bbx2, bby2)
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = True,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to all intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output format must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
||||
take_indices = [self.stage_ends[i] for i in take_indices]
|
||||
max_index = self.stage_ends[max_index]
|
||||
|
||||
# forward pass
|
||||
B, _, height, width = x.shape
|
||||
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
|
||||
|
||||
# step2: tokens learning in the two stages
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
network = self.network
|
||||
else:
|
||||
network = self.network[:max_index + 1]
|
||||
for idx, block in enumerate(network):
|
||||
if idx == 2:
|
||||
# add positional encoding after outlooker blocks
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
x = block(x)
|
||||
if idx in take_indices:
|
||||
# normalize intermediates with final norm layer if enabled
|
||||
intermediates.append(x.permute(0, 3, 1, 2))
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
# NOTE not supporting return of class tokens
|
||||
# step3: post network, apply class attention or not
|
||||
B, H, W, C = x.shape
|
||||
x = x.reshape(B, -1, C)
|
||||
if self.post_network is not None:
|
||||
x = self.forward_cls(x)
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
n: Union[int, List[int], Tuple[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.stage_ends), n)
|
||||
max_index = self.stage_ends[max_index]
|
||||
self.network = self.network[:max_index + 1] # truncate blocks
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.post_network = nn.ModuleList() # prune token blocks with head
|
||||
self.head = nn.Identity()
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
|
||||
|
||||
|
@ -728,12 +822,12 @@ class VOLO(nn.Module):
|
|||
|
||||
|
||||
def _create_volo(variant, pretrained=False, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
||||
out_indices = kwargs.pop('out_indices', 3)
|
||||
return build_model_with_cfg(
|
||||
VOLO,
|
||||
variant,
|
||||
pretrained,
|
||||
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
|
@ -13,14 +13,16 @@ Modifications and additions for timm hacked together by / Copyright 2021, Ross W
|
|||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import DropPath, trunc_normal_, to_2tuple
|
||||
from timm.layers import DropPath, trunc_normal_, to_2tuple, use_fused_attn
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._features_fx import register_notrace_module
|
||||
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
||||
from .cait import ClassAttn
|
||||
|
@ -195,6 +197,7 @@ class ClassAttentionBlock(nn.Module):
|
|||
|
||||
|
||||
class XCA(nn.Module):
|
||||
fused_attn: torch.jit.Final[bool]
|
||||
""" Cross-Covariance Attention (XCA)
|
||||
Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax
|
||||
normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h)
|
||||
|
@ -203,6 +206,7 @@ class XCA(nn.Module):
|
|||
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.fused_attn = use_fused_attn(experimental=True)
|
||||
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
|
@ -214,16 +218,21 @@ class XCA(nn.Module):
|
|||
# Result of next line is (qkv, B, num (H)eads, (C')hannels per head, N)
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1)
|
||||
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
# Paper section 3.2 l2-Normalization and temperature scaling
|
||||
q = torch.nn.functional.normalize(q, dim=-1)
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
# (B, H, C', N), permute -> (B, N, H, C')
|
||||
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
|
||||
if self.fused_attn:
|
||||
q = torch.nn.functional.normalize(q, dim=-1) * self.temperature
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
else:
|
||||
# Paper section 3.2 l2-Normalization and temperature scaling
|
||||
q = torch.nn.functional.normalize(q, dim=-1)
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
x = attn @ v
|
||||
|
||||
x = x.permute(0, 3, 1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
@ -348,6 +357,7 @@ class Xcit(nn.Module):
|
|||
embed_dim=embed_dim,
|
||||
act_layer=act_layer,
|
||||
)
|
||||
r = patch_size
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
if use_pos_embed:
|
||||
|
@ -370,6 +380,7 @@ class Xcit(nn.Module):
|
|||
eta=eta,
|
||||
)
|
||||
for _ in range(depth)])
|
||||
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
|
||||
|
||||
self.cls_attn_blocks = nn.ModuleList([
|
||||
ClassAttentionBlock(
|
||||
|
@ -428,6 +439,85 @@ class Xcit(nn.Module):
|
|||
self.global_pool = global_pool
|
||||
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = True,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to all intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
|
||||
reshape = output_fmt == 'NCHW'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
||||
|
||||
# forward pass
|
||||
B, _, height, width = x.shape
|
||||
x, (Hp, Wp) = self.patch_embed(x)
|
||||
|
||||
if self.pos_embed is not None:
|
||||
# `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C)
|
||||
pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
|
||||
x = x + pos_encoding
|
||||
x = self.pos_drop(x)
|
||||
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
blocks = self.blocks
|
||||
else:
|
||||
blocks = self.blocks[:max_index + 1]
|
||||
for i, blk in enumerate(blocks):
|
||||
x = blk(x, Hp, Wp)
|
||||
if i in take_indices:
|
||||
# normalize intermediates with final norm layer if enabled
|
||||
intermediates.append(self.norm(x) if norm else x)
|
||||
|
||||
# process intermediates
|
||||
if reshape:
|
||||
# reshape to BCHW output format
|
||||
intermediates = [y.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
# NOTE not supporting return of class tokens
|
||||
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
|
||||
for blk in self.cls_attn_blocks:
|
||||
x = blk(x)
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
n: Union[int, List[int], Tuple[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.blocks), n)
|
||||
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.cls_attn_blocks = nn.ModuleList() # prune token blocks with head
|
||||
self.head = nn.Identity()
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
# x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches)
|
||||
|
@ -498,14 +588,13 @@ def checkpoint_filter_fn(state_dict, model):
|
|||
|
||||
|
||||
def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs):
|
||||
if kwargs.get('features_only', None):
|
||||
raise RuntimeError('features_only not implemented for Cross-Covariance Image Transformers models.')
|
||||
|
||||
out_indices = kwargs.pop('out_indices', 3)
|
||||
model = build_model_with_cfg(
|
||||
Xcit,
|
||||
variant,
|
||||
pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
|
Loading…
Reference in New Issue