Add forward_intermediates support for xcit, cait, and volo.

pull/2162/head
Ross Wightman 2024-04-29 16:30:45 -07:00
parent e741370e2b
commit 9b9a356a04
4 changed files with 311 additions and 51 deletions

View File

@ -165,6 +165,7 @@ class FeatureHooks:
):
# setup feature hooks
self._feature_outputs = defaultdict(OrderedDict)
self._handles = []
modules = {k: v for k, v in named_modules}
for i, h in enumerate(hooks):
hook_name = h['module']
@ -173,11 +174,12 @@ class FeatureHooks:
hook_fn = partial(self._collect_output_hook, hook_id)
hook_type = h.get('hook_type', default_hook_type)
if hook_type == 'forward_pre':
m.register_forward_pre_hook(hook_fn)
handle = m.register_forward_pre_hook(hook_fn)
elif hook_type == 'forward':
m.register_forward_hook(hook_fn)
handle = m.register_forward_hook(hook_fn)
else:
assert False, "Unsupported hook type"
self._handles.append(handle)
def _collect_output_hook(self, hook_id, *args):
x = args[-1] # tensor we want is last argument, output for fwd, input for fwd_pre

View File

@ -9,6 +9,7 @@ Modifications and additions for timm hacked together by / Copyright 2021, Ross W
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
@ -16,6 +17,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
@ -246,8 +248,8 @@ class Cait(nn.Module):
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
@ -268,6 +270,7 @@ class Cait(nn.Module):
mlp_block=mlp_block,
init_values=init_values,
) for i in range(depth)])
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
self.blocks_token_only = nn.ModuleList([block_layers_token(
dim=embed_dim,
@ -283,7 +286,6 @@ class Cait(nn.Module):
self.norm = norm_layer(embed_dim)
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
@ -336,6 +338,80 @@ class Cait(nn.Module):
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x) if norm else x)
# process intermediates
if reshape:
# reshape to BCHW output format
H, W = self.patch_embed.dynamic_feat_size((height, width))
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
for i, blk in enumerate(self.blocks_token_only):
cls_tokens = blk(x, cls_tokens)
x = torch.cat((cls_tokens, x), dim=1)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
n: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.blocks), n)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.blocks_token_only = nn.ModuleList() # prune token blocks with head
self.head = nn.Identity()
return take_indices
def forward_features(self, x):
x = self.patch_embed(x)
x = x + self.pos_embed
@ -373,14 +449,13 @@ def checkpoint_filter_fn(state_dict, model=None):
def _create_cait(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
out_indices = kwargs.pop('out_indices', 3)
model = build_model_with_cfg(
Cait,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model

View File

@ -20,6 +20,7 @@ Modifications and additions for timm by / Copyright 2022, Ross Wightman
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
@ -28,8 +29,9 @@ import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_
from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._registry import register_model, generate_default_cfgs
__all__ = ['VOLO'] # model_registry will add each entrypoint fn to this
@ -119,24 +121,24 @@ class Outlooker(nn.Module):
qkv_bias=qkv_bias,
attn_drop=attn_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = x + self.drop_path1(self.attn(self.norm1(x)))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
return x
class Attention(nn.Module):
fused_attn: torch.jit.Final[bool]
def __init__(
self,
@ -150,6 +152,7 @@ class Attention(nn.Module):
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
@ -162,11 +165,19 @@ class Attention(nn.Module):
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = (attn @ v).transpose(1, 2).reshape(B, H, W, C)
x = x.transpose(1, 2).reshape(B, H, W, C)
x = self.proj(x)
x = self.proj_drop(x)
@ -189,17 +200,15 @@ class Transformer(nn.Module):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = x + self.drop_path1(self.attn(self.norm1(x)))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
return x
@ -234,8 +243,9 @@ class ClassAttention(nn.Module):
kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim)
attn = ((q * self.scale) @ k.transpose(-2, -1))
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
@ -270,21 +280,21 @@ class ClassBlock(nn.Module):
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
cls_embed = x[:, :1]
cls_embed = cls_embed + self.drop_path(self.attn(self.norm1(x)))
cls_embed = cls_embed + self.drop_path(self.mlp(self.norm2(cls_embed)))
cls_embed = cls_embed + self.drop_path1(self.attn(self.norm1(x)))
cls_embed = cls_embed + self.drop_path2(self.mlp(self.norm2(cls_embed)))
return torch.cat([cls_embed, x[:, 1:]], dim=1)
@ -495,6 +505,7 @@ class VOLO(nn.Module):
hidden_dim=stem_hidden_dim,
embed_dim=embed_dims[0],
)
r = patch_size
# inital positional encoding, we add positional encoding after outlooker blocks
patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale)
@ -502,7 +513,10 @@ class VOLO(nn.Module):
self.pos_drop = nn.Dropout(p=pos_drop_rate)
# set the main block in network
self.stage_ends = []
self.feature_info = []
network = []
block_idx = 0
for i in range(len(layers)):
if outlook_attention[i]:
# stage 1
@ -517,7 +531,6 @@ class VOLO(nn.Module):
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
)
network.append(stage)
else:
# stage 2
stage = transformer_blocks(
@ -532,11 +545,15 @@ class VOLO(nn.Module):
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
)
network.append(stage)
network.append(stage)
self.stage_ends.append(block_idx)
self.feature_info.append(dict(num_chs=embed_dims[i], reduction=r, module=f'network.{block_idx}'))
block_idx += 1
if downsamples[i]:
# downsampling between two stages
network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2))
r *= 2
block_idx += 1
self.network = nn.ModuleList(network)
@ -691,6 +708,83 @@ class VOLO(nn.Module):
# return these: 1. class token, 2. classes from all feature tokens, 3. bounding box
return x_cls, x_aux, (bbx1, bby1, bbx2, bby2)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW',), 'Output format must be NCHW.'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
# forward pass
B, _, height, width = x.shape
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
# step2: tokens learning in the two stages
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
network = self.network
else:
network = self.network[:max_index + 1]
for idx, block in enumerate(network):
if idx == 2:
# add positional encoding after outlooker blocks
x = x + self.pos_embed
x = self.pos_drop(x)
x = block(x)
if idx in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(x.permute(0, 3, 1, 2))
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
# step3: post network, apply class attention or not
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
if self.post_network is not None:
x = self.forward_cls(x)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
n: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.stage_ends), n)
max_index = self.stage_ends[max_index]
self.network = self.network[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.post_network = nn.ModuleList() # prune token blocks with head
self.head = nn.Identity()
return take_indices
def forward_features(self, x):
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
@ -728,12 +822,12 @@ class VOLO(nn.Module):
def _create_volo(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
out_indices = kwargs.pop('out_indices', 3)
return build_model_with_cfg(
VOLO,
variant,
pretrained,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)

View File

@ -13,14 +13,16 @@ Modifications and additions for timm hacked together by / Copyright 2021, Ross W
import math
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, to_2tuple
from timm.layers import DropPath, trunc_normal_, to_2tuple, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._features_fx import register_notrace_module
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
from .cait import ClassAttn
@ -195,6 +197,7 @@ class ClassAttentionBlock(nn.Module):
class XCA(nn.Module):
fused_attn: torch.jit.Final[bool]
""" Cross-Covariance Attention (XCA)
Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax
normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h)
@ -203,6 +206,7 @@ class XCA(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.fused_attn = use_fused_attn(experimental=True)
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
@ -214,16 +218,21 @@ class XCA(nn.Module):
# Result of next line is (qkv, B, num (H)eads, (C')hannels per head, N)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
# Paper section 3.2 l2-Normalization and temperature scaling
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# (B, H, C', N), permute -> (B, N, H, C')
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
if self.fused_attn:
q = torch.nn.functional.normalize(q, dim=-1) * self.temperature
k = torch.nn.functional.normalize(k, dim=-1)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, scale=1.0)
else:
# Paper section 3.2 l2-Normalization and temperature scaling
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.permute(0, 3, 1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@ -348,6 +357,7 @@ class Xcit(nn.Module):
embed_dim=embed_dim,
act_layer=act_layer,
)
r = patch_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_pos_embed:
@ -370,6 +380,7 @@ class Xcit(nn.Module):
eta=eta,
)
for _ in range(depth)])
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
self.cls_attn_blocks = nn.ModuleList([
ClassAttentionBlock(
@ -428,6 +439,85 @@ class Xcit(nn.Module):
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x, (Hp, Wp) = self.patch_embed(x)
if self.pos_embed is not None:
# `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C)
pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
x = x + pos_encoding
x = self.pos_drop(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x, Hp, Wp)
if i in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x) if norm else x)
# process intermediates
if reshape:
# reshape to BCHW output format
intermediates = [y.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
for blk in self.cls_attn_blocks:
x = blk(x)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
n: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.blocks), n)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.cls_attn_blocks = nn.ModuleList() # prune token blocks with head
self.head = nn.Identity()
return take_indices
def forward_features(self, x):
B = x.shape[0]
# x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches)
@ -498,14 +588,13 @@ def checkpoint_filter_fn(state_dict, model):
def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Cross-Covariance Image Transformers models.')
out_indices = kwargs.pop('out_indices', 3)
model = build_model_with_cfg(
Xcit,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model