mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Fixup byoanet configs to pass unit tests. Add swin_attn and swinnet26t model for testing.
This commit is contained in:
parent
e15c3886ba
commit
9cc7dda6e5
@ -35,7 +35,7 @@ __all__ = ['ByoaNet']
|
|||||||
def _cfg(url='', **kwargs):
|
def _cfg(url='', **kwargs):
|
||||||
return {
|
return {
|
||||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
||||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||||
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
|
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
|
||||||
'fixed_input_size': False, 'min_input_size': (3, 224, 224),
|
'fixed_input_size': False, 'min_input_size': (3, 224, 224),
|
||||||
@ -45,17 +45,19 @@ def _cfg(url='', **kwargs):
|
|||||||
|
|
||||||
default_cfgs = {
|
default_cfgs = {
|
||||||
# GPU-Efficient (ResNet) weights
|
# GPU-Efficient (ResNet) weights
|
||||||
'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256)),
|
'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||||
'botnet50t_224': _cfg(url='', fixed_input_size=True),
|
'botnet50t_224': _cfg(url='', fixed_input_size=True),
|
||||||
'botnet50t_c4c5_224': _cfg(url='', fixed_input_size=True),
|
'botnet50t_c4c5_224': _cfg(url='', fixed_input_size=True),
|
||||||
|
|
||||||
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
||||||
'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
||||||
'halonet26t': _cfg(url='', input_size=(3, 256, 256)),
|
'halonet26t': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
|
||||||
'halonet50t': _cfg(url=''),
|
'halonet50t': _cfg(url='', min_input_size=(3, 224, 224)),
|
||||||
|
|
||||||
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256)),
|
'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||||
'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)),
|
'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)),
|
||||||
|
|
||||||
|
'swinnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -95,10 +97,10 @@ model_cfgs = dict(
|
|||||||
|
|
||||||
botnet26t=ByoaCfg(
|
botnet26t=ByoaCfg(
|
||||||
blocks=(
|
blocks=(
|
||||||
ByoaBlocksCfg(type='bottle', d=3, c=256, s=2, gs=0, br=0.25),
|
ByoaBlocksCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
|
||||||
ByoaBlocksCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25),
|
ByoaBlocksCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25),
|
||||||
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25),
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25),
|
||||||
ByoaBlocksCfg(type='self_attn', d=3, c=2048, s=1, gs=0, br=0.25),
|
ByoaBlocksCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25),
|
||||||
),
|
),
|
||||||
stem_chs=64,
|
stem_chs=64,
|
||||||
stem_type='tiered',
|
stem_type='tiered',
|
||||||
@ -230,6 +232,22 @@ model_cfgs = dict(
|
|||||||
self_attn_layer='lambda',
|
self_attn_layer='lambda',
|
||||||
self_attn_kwargs=dict()
|
self_attn_kwargs=dict()
|
||||||
),
|
),
|
||||||
|
|
||||||
|
swinnet26t=ByoaCfg(
|
||||||
|
blocks=(
|
||||||
|
ByoaBlocksCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
|
||||||
|
ByoaBlocksCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25),
|
||||||
|
interleave_attn(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25),
|
||||||
|
ByoaBlocksCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25),
|
||||||
|
),
|
||||||
|
stem_chs=64,
|
||||||
|
stem_type='tiered',
|
||||||
|
stem_pool='maxpool',
|
||||||
|
num_features=0,
|
||||||
|
self_attn_layer='swin',
|
||||||
|
self_attn_fixed_size=True,
|
||||||
|
self_attn_kwargs=dict(win_size=8)
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -452,3 +470,11 @@ def lambda_resnet50t(pretrained=False, **kwargs):
|
|||||||
""" Lambda-ResNet-50T. Lambda layers in one C4 stage and all C5.
|
""" Lambda-ResNet-50T. Lambda layers in one C4 stage and all C5.
|
||||||
"""
|
"""
|
||||||
return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs)
|
return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def swinnet26t_256(pretrained=False, **kwargs):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
kwargs.setdefault('img_size', 256)
|
||||||
|
return _create_byoanet('swinnet26t_256', 'swinnet26t', pretrained=pretrained, **kwargs)
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
from .bottleneck_attn import BottleneckAttn
|
from .bottleneck_attn import BottleneckAttn
|
||||||
from .halo_attn import HaloAttn
|
from .halo_attn import HaloAttn
|
||||||
from .lambda_layer import LambdaLayer
|
from .lambda_layer import LambdaLayer
|
||||||
|
from .swin_attn import WindowAttention
|
||||||
|
|
||||||
|
|
||||||
def get_self_attn(attn_type):
|
def get_self_attn(attn_type):
|
||||||
@ -10,6 +11,10 @@ def get_self_attn(attn_type):
|
|||||||
return HaloAttn
|
return HaloAttn
|
||||||
elif attn_type == 'lambda':
|
elif attn_type == 'lambda':
|
||||||
return LambdaLayer
|
return LambdaLayer
|
||||||
|
elif attn_type == 'swin':
|
||||||
|
return WindowAttention
|
||||||
|
else:
|
||||||
|
assert False, f"Unknown attn type ({attn_type})"
|
||||||
|
|
||||||
|
|
||||||
def create_self_attn(attn_type, dim, stride=1, **kwargs):
|
def create_self_attn(attn_type, dim, stride=1, **kwargs):
|
||||||
|
178
timm/models/layers/swin_attn.py
Normal file
178
timm/models/layers/swin_attn.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
""" Shifted Window Attn
|
||||||
|
|
||||||
|
This is a WIP experiment to apply windowed attention from the Swin Transformer
|
||||||
|
to a stand-alone module for use as an attn block in conv nets.
|
||||||
|
|
||||||
|
Based on original swin window code at https://github.com/microsoft/Swin-Transformer
|
||||||
|
Swin Transformer paper: https://arxiv.org/pdf/2103.14030.pdf
|
||||||
|
"""
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from .drop import DropPath
|
||||||
|
from .helpers import to_2tuple
|
||||||
|
from .weight_init import trunc_normal_
|
||||||
|
|
||||||
|
|
||||||
|
def window_partition(x, win_size: int):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
win_size (int): window size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
"""
|
||||||
|
B, H, W, C = x.shape
|
||||||
|
x = x.view(B, H // win_size, win_size, W // win_size, win_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C)
|
||||||
|
return windows
|
||||||
|
|
||||||
|
|
||||||
|
def window_reverse(windows, win_size: int, H: int, W: int):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
win_size (int): Window size
|
||||||
|
H (int): Height of image
|
||||||
|
W (int): Width of image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
"""
|
||||||
|
B = int(windows.shape[0] / (H * W / win_size / win_size))
|
||||||
|
x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class WindowAttention(nn.Module):
|
||||||
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||||
|
It supports both of shifted and non-shifted window.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
win_size (int): The height and width of the window.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||||
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, dim, dim_out=None, feat_size=None, stride=1, win_size=8, shift_size=None, num_heads=8,
|
||||||
|
qkv_bias=True, attn_drop=0.):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.dim_out = dim_out or dim
|
||||||
|
self.feat_size = to_2tuple(feat_size)
|
||||||
|
self.win_size = win_size
|
||||||
|
self.shift_size = shift_size or win_size // 2
|
||||||
|
if min(self.feat_size) <= win_size:
|
||||||
|
# if window size is larger than input resolution, we don't partition windows
|
||||||
|
self.shift_size = 0
|
||||||
|
self.win_size = min(self.feat_size)
|
||||||
|
assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-window_size"
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = self.dim_out // num_heads
|
||||||
|
self.scale = head_dim ** -0.5
|
||||||
|
|
||||||
|
if self.shift_size > 0:
|
||||||
|
# calculate attention mask for SW-MSA
|
||||||
|
H, W = self.feat_size
|
||||||
|
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
||||||
|
h_slices = (
|
||||||
|
slice(0, -self.win_size),
|
||||||
|
slice(-self.win_size, -self.shift_size),
|
||||||
|
slice(-self.shift_size, None))
|
||||||
|
w_slices = (
|
||||||
|
slice(0, -self.win_size),
|
||||||
|
slice(-self.win_size, -self.shift_size),
|
||||||
|
slice(-self.shift_size, None))
|
||||||
|
cnt = 0
|
||||||
|
for h in h_slices:
|
||||||
|
for w in w_slices:
|
||||||
|
img_mask[:, h, w, :] = cnt
|
||||||
|
cnt += 1
|
||||||
|
mask_windows = window_partition(img_mask, self.win_size) # num_win, window_size, window_size, 1
|
||||||
|
mask_windows = mask_windows.view(-1, self.win_size * self.win_size)
|
||||||
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||||
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
self.register_buffer("attn_mask", attn_mask)
|
||||||
|
|
||||||
|
# define a parameter table of relative position bias
|
||||||
|
self.relative_position_bias_table = nn.Parameter(
|
||||||
|
# 2 * Wh - 1 * 2 * Ww - 1, nH
|
||||||
|
torch.zeros((2 * self.win_size - 1) * (2 * self.win_size - 1), num_heads))
|
||||||
|
|
||||||
|
# get pair-wise relative position index for each token inside the window
|
||||||
|
coords_h = torch.arange(self.win_size)
|
||||||
|
coords_w = torch.arange(self.win_size)
|
||||||
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||||
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||||
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||||
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||||
|
relative_coords[:, :, 0] += self.win_size - 1 # shift to start from 0
|
||||||
|
relative_coords[:, :, 1] += self.win_size - 1
|
||||||
|
relative_coords[:, :, 0] *= 2 * self.win_size - 1
|
||||||
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||||
|
self.register_buffer("relative_position_index", relative_position_index)
|
||||||
|
trunc_normal_(self.relative_position_bias_table, std=.02)
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, self.dim_out * 3, bias=qkv_bias)
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.softmax = nn.Softmax(dim=-1)
|
||||||
|
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x = x.permute(0, 2, 3, 1)
|
||||||
|
|
||||||
|
# cyclic shift
|
||||||
|
if self.shift_size > 0:
|
||||||
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
||||||
|
else:
|
||||||
|
shifted_x = x
|
||||||
|
|
||||||
|
# partition windows
|
||||||
|
win_size_sq = self.win_size * self.win_size
|
||||||
|
x_windows = window_partition(shifted_x, self.win_size) # num_win * B, window_size, window_size, C
|
||||||
|
x_windows = x_windows.view(-1, win_size_sq, C) # num_win * B, window_size*window_size, C
|
||||||
|
BW, N, _ = x_windows.shape
|
||||||
|
|
||||||
|
qkv = self.qkv(x_windows)
|
||||||
|
qkv = qkv.reshape(BW, N, 3, self.num_heads, self.dim_out // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||||
|
q = q * self.scale
|
||||||
|
attn = (q @ k.transpose(-2, -1))
|
||||||
|
|
||||||
|
relative_position_bias = self.relative_position_bias_table[
|
||||||
|
self.relative_position_index.view(-1)].view(win_size_sq, win_size_sq, -1)
|
||||||
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh * Ww, Wh * Ww
|
||||||
|
attn = attn + relative_position_bias.unsqueeze(0)
|
||||||
|
if self.attn_mask is not None:
|
||||||
|
num_win = self.attn_mask.shape[0]
|
||||||
|
attn = attn.view(B, num_win, self.num_heads, N, N) + self.attn_mask.unsqueeze(1).unsqueeze(0)
|
||||||
|
attn = attn.view(-1, self.num_heads, N, N)
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(BW, N, self.dim_out)
|
||||||
|
|
||||||
|
# merge windows
|
||||||
|
x = x.view(-1, self.win_size, self.win_size, self.dim_out)
|
||||||
|
shifted_x = window_reverse(x, self.win_size, H, W) # B H' W' C
|
||||||
|
|
||||||
|
# reverse cyclic shift
|
||||||
|
if self.shift_size > 0:
|
||||||
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||||
|
else:
|
||||||
|
x = shifted_x
|
||||||
|
x = x.view(B, H, W, self.dim_out).permute(0, 3, 1, 2)
|
||||||
|
x = self.pool(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user