mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Use torch.repeat_interleave()
to generate repeated indices faster (#1058)
* update: use numpy to generate repeated indices faster * update: use torch.repeat_interleave() instead of np.repeat() * refactor: remove unused import, numpy * refactor: torch.range to torch.arange * update: tensor to list before appending the extra samples * update: concatenate the paddings with torch.cat
This commit is contained in:
parent
a79b2f3328
commit
a0b2657497
@ -103,15 +103,16 @@ class RepeatAugSampler(Sampler):
|
|||||||
g = torch.Generator()
|
g = torch.Generator()
|
||||||
g.manual_seed(self.epoch)
|
g.manual_seed(self.epoch)
|
||||||
if self.shuffle:
|
if self.shuffle:
|
||||||
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
indices = torch.randperm(len(self.dataset), generator=g)
|
||||||
else:
|
else:
|
||||||
indices = list(range(len(self.dataset)))
|
indices = torch.arange(start=0, end=len(self.dataset))
|
||||||
|
|
||||||
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
|
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
|
||||||
indices = [x for x in indices for _ in range(self.num_repeats)]
|
indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0)
|
||||||
# add extra samples to make it evenly divisible
|
# add extra samples to make it evenly divisible
|
||||||
padding_size = self.total_size - len(indices)
|
padding_size = self.total_size - len(indices)
|
||||||
indices += indices[:padding_size]
|
if padding_size > 0:
|
||||||
|
indices = torch.cat([indices, indices[:padding_size]], dim=0)
|
||||||
assert len(indices) == self.total_size
|
assert len(indices) == self.total_size
|
||||||
|
|
||||||
# subsample per rank
|
# subsample per rank
|
||||||
|
Loading…
x
Reference in New Issue
Block a user