mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Merge branch 'nateraw-hf-save-and-push'
This commit is contained in:
commit
a22b85c1b9
@ -11,11 +11,11 @@ from typing import Any, Callable, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from torch.hub import load_state_dict_from_url
|
||||
|
||||
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet
|
||||
from .fx_features import FeatureGraphNet
|
||||
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf, load_state_dict_from_url
|
||||
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf
|
||||
from .layers import Conv2dSame, Linear
|
||||
|
||||
|
||||
@ -184,12 +184,12 @@ def load_pretrained(model, default_cfg=None, num_classes=1000, in_chans=3, filte
|
||||
if not pretrained_url and not hf_hub_id:
|
||||
_logger.warning("No pretrained weights exist for this model. Using random initialization.")
|
||||
return
|
||||
if hf_hub_id and has_hf_hub(necessary=not pretrained_url):
|
||||
_logger.info(f'Loading pretrained weights from Hugging Face hub ({hf_hub_id})')
|
||||
state_dict = load_state_dict_from_hf(hf_hub_id)
|
||||
else:
|
||||
if pretrained_url:
|
||||
_logger.info(f'Loading pretrained weights from url ({pretrained_url})')
|
||||
state_dict = load_state_dict_from_url(pretrained_url, progress=progress, map_location='cpu')
|
||||
elif hf_hub_id and has_hf_hub(necessary=True):
|
||||
_logger.info(f'Loading pretrained weights from Hugging Face hub ({hf_hub_id})')
|
||||
state_dict = load_state_dict_from_hf(hf_hub_id)
|
||||
if filter_fn is not None:
|
||||
# for backwards compat with filter fn that take one arg, try one first, the two
|
||||
try:
|
||||
|
@ -2,10 +2,11 @@ import json
|
||||
import logging
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import Union, Optional
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX
|
||||
from torch.hub import HASH_REGEX, download_url_to_file, urlparse
|
||||
try:
|
||||
from torch.hub import get_dir
|
||||
except ImportError:
|
||||
@ -13,12 +14,12 @@ except ImportError:
|
||||
|
||||
from timm import __version__
|
||||
try:
|
||||
from huggingface_hub import hf_hub_url
|
||||
from huggingface_hub import cached_download
|
||||
from huggingface_hub import HfApi, HfFolder, Repository, cached_download, hf_hub_url
|
||||
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
|
||||
_has_hf_hub = True
|
||||
except ImportError:
|
||||
hf_hub_url = None
|
||||
cached_download = None
|
||||
_has_hf_hub = False
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
@ -53,11 +54,11 @@ def download_cached_file(url, check_hash=True, progress=False):
|
||||
|
||||
|
||||
def has_hf_hub(necessary=False):
|
||||
if hf_hub_url is None and necessary:
|
||||
if not _has_hf_hub and necessary:
|
||||
# if no HF Hub module installed and it is necessary to continue, raise error
|
||||
raise RuntimeError(
|
||||
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
||||
return hf_hub_url is not None
|
||||
return _has_hf_hub
|
||||
|
||||
|
||||
def hf_split(hf_id):
|
||||
@ -94,3 +95,77 @@ def load_state_dict_from_hf(model_id: str):
|
||||
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
|
||||
state_dict = torch.load(cached_file, map_location='cpu')
|
||||
return state_dict
|
||||
|
||||
|
||||
def save_for_hf(model, save_directory, model_config=None):
|
||||
assert has_hf_hub(True)
|
||||
model_config = model_config or {}
|
||||
save_directory = Path(save_directory)
|
||||
save_directory.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
weights_path = save_directory / 'pytorch_model.bin'
|
||||
torch.save(model.state_dict(), weights_path)
|
||||
|
||||
config_path = save_directory / 'config.json'
|
||||
hf_config = model.default_cfg
|
||||
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes)
|
||||
hf_config['num_features'] = model_config.pop('num_features', model.num_features)
|
||||
hf_config['labels'] = model_config.pop('labels', [f"LABEL_{i}" for i in range(hf_config['num_classes'])])
|
||||
hf_config.update(model_config)
|
||||
|
||||
with config_path.open('w') as f:
|
||||
json.dump(hf_config, f, indent=2)
|
||||
|
||||
|
||||
def push_to_hf_hub(
|
||||
model,
|
||||
local_dir,
|
||||
repo_namespace_or_url=None,
|
||||
commit_message='Add model',
|
||||
use_auth_token=True,
|
||||
git_email=None,
|
||||
git_user=None,
|
||||
revision=None,
|
||||
model_config=None,
|
||||
):
|
||||
if repo_namespace_or_url:
|
||||
repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split('/')[-2:]
|
||||
else:
|
||||
if isinstance(use_auth_token, str):
|
||||
token = use_auth_token
|
||||
else:
|
||||
token = HfFolder.get_token()
|
||||
|
||||
if token is None:
|
||||
raise ValueError(
|
||||
"You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
|
||||
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
|
||||
"token as the `use_auth_token` argument."
|
||||
)
|
||||
|
||||
repo_owner = HfApi().whoami(token)['name']
|
||||
repo_name = Path(local_dir).name
|
||||
|
||||
repo_url = f'https://huggingface.co/{repo_owner}/{repo_name}'
|
||||
|
||||
repo = Repository(
|
||||
local_dir,
|
||||
clone_from=repo_url,
|
||||
use_auth_token=use_auth_token,
|
||||
git_user=git_user,
|
||||
git_email=git_email,
|
||||
revision=revision,
|
||||
)
|
||||
|
||||
# Prepare a default model card that includes the necessary tags to enable inference.
|
||||
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}'
|
||||
with repo.commit(commit_message):
|
||||
# Save model weights and config.
|
||||
save_for_hf(model, repo.local_dir, model_config=model_config)
|
||||
|
||||
# Save a model card if it doesn't exist.
|
||||
readme_path = Path(repo.local_dir) / 'README.md'
|
||||
if not readme_path.exists():
|
||||
readme_path.write_text(readme_text)
|
||||
|
||||
return repo.git_remote_url()
|
||||
|
Loading…
x
Reference in New Issue
Block a user