add fasternet

This commit is contained in:
Ryan 2025-05-06 02:59:33 +08:00
parent 91e6e1737e
commit a3e66b14ea
4 changed files with 464 additions and 2 deletions

View File

@ -54,7 +54,7 @@ FEAT_INTER_FILTERS = [
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet',
'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2', 'aimv2*', 'swiftformer',
'starnet', 'shvit',
'starnet', 'shvit', 'fasternet',
]
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
@ -219,6 +219,7 @@ def test_model_backward(model_name, batch_size):
EARLY_POOL_MODELS = (
timm.models.EfficientVit,
timm.models.EfficientVitLarge,
timm.models.FasterNet,
timm.models.HighPerfGpuNet,
timm.models.GhostNet,
timm.models.MetaNeXt, # InceptionNeXt

View File

@ -20,6 +20,7 @@ from .efficientnet import *
from .efficientvit_mit import *
from .efficientvit_msra import *
from .eva import *
from .fasternet import *
from .fastvit import *
from .focalnet import *
from .gcvit import *

459
timm/models/fasternet.py Normal file
View File

@ -0,0 +1,459 @@
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectAdaptivePool2d, Linear, DropPath, trunc_normal_, LayerType
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
__all__ = ['FasterNet']
class Partial_conv3(nn.Module):
def __init__(self, dim: int, n_div: int, forward: str):
super().__init__()
self.dim_conv3 = dim // n_div
self.dim_untouched = dim - self.dim_conv3
self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)
if forward == 'slicing':
self.forward = self.forward_slicing
elif forward == 'split_cat':
self.forward = self.forward_split_cat
else:
raise NotImplementedError
def forward_slicing(self, x: torch.Tensor) -> torch.Tensor:
# only for inference
x = x.clone() # !!! Keep the original input intact for the residual connection later
x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
return x
def forward_split_cat(self, x: torch.Tensor) -> torch.Tensor:
# for training/inference
x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
x1 = self.partial_conv3(x1)
x = torch.cat((x1, x2), 1)
return x
class MLPBlock(nn.Module):
def __init__(
self,
dim: int,
n_div: int,
mlp_ratio: float,
drop_path: float,
layer_scale_init_value: float,
act_layer: LayerType = partial(nn.ReLU, inplace=True),
norm_layer: LayerType = nn.BatchNorm2d,
pconv_fw_type: str = 'split_cat',
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(*[
nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
norm_layer(mlp_hidden_dim),
act_layer(),
nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False),
])
self.spatial_mixing = Partial_conv3(dim, n_div, pconv_fw_type)
if layer_scale_init_value > 0:
self.layer_scale = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
else:
self.layer_scale = None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.spatial_mixing(x)
if self.layer_scale is not None:
x = shortcut + self.drop_path(
self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
else:
x = shortcut + self.drop_path(self.mlp(x))
return x
class Block(nn.Module):
def __init__(
self,
dim: int,
depth: int,
n_div: int,
mlp_ratio: float,
drop_path: float,
layer_scale_init_value: float,
act_layer: LayerType = partial(nn.ReLU, inplace=True),
norm_layer: LayerType = nn.BatchNorm2d,
pconv_fw_type: str = 'split_cat',
use_merge: bool = True,
merge_size: Union[int, Tuple[int, int]] = 2,
):
super().__init__()
self.blocks = nn.Sequential(*[
MLPBlock(
dim=dim,
n_div=n_div,
mlp_ratio=mlp_ratio,
drop_path=drop_path[i],
layer_scale_init_value=layer_scale_init_value,
norm_layer=norm_layer,
act_layer=act_layer,
pconv_fw_type=pconv_fw_type
)
for i in range(depth)
])
self.down = PatchMerging(
dim=dim // 2,
patch_size=merge_size,
norm_layer=norm_layer,
) if use_merge else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.blocks(self.down(x))
return x
class PatchEmbed(nn.Module):
def __init__(
self,
in_chans: int,
embed_dim: int,
patch_size: Union[int, Tuple[int, int]] = 4,
norm_layer: LayerType = nn.BatchNorm2d,
):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, patch_size, patch_size, bias=False)
self.norm = norm_layer(embed_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.norm(self.proj(x))
class PatchMerging(nn.Module):
def __init__(
self,
dim: int,
patch_size: Union[int, Tuple[int, int]] = 2,
norm_layer: LayerType = nn.BatchNorm2d,
):
super().__init__()
self.reduction = nn.Conv2d(dim, 2 * dim, patch_size, patch_size, bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.norm(self.reduction(x))
class FasterNet(nn.Module):
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 96,
depths: Union[int, Tuple[int, ...]] = (1, 2, 8, 2),
mlp_ratio: float = 2.,
n_div: int = 4,
patch_size: Union[int, Tuple[int, int]] = 4,
merge_size: Union[int, Tuple[int, int]] = 2,
patch_norm: bool = True,
feature_dim: int = 1280,
drop_rate: float = 0.,
drop_path_rate: float = 0.1,
layer_scale_init_value: float = 0.,
act_layer: LayerType = partial(nn.ReLU, inplace=True),
norm_layer: LayerType = nn.BatchNorm2d,
pconv_fw_type: str = 'split_cat',
):
super().__init__()
assert pconv_fw_type in ('split_cat', 'slicing',)
self.num_classes = num_classes
self.drop_rate = drop_rate
if not isinstance(depths, (list, tuple)):
depths = (depths) # it means the model has only one stage
self.num_stages = len(depths)
self.feature_info = []
self.grad_checkpointing = False
self.patch_embed = PatchEmbed(
in_chans=in_chans,
embed_dim=embed_dim,
patch_size=patch_size,
norm_layer=norm_layer if patch_norm else nn.Identity,
)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
# build layers
stages_list = []
for i in range(self.num_stages):
dim = int(embed_dim * 2 ** i)
stage = Block(
dim=dim,
depth=depths[i],
n_div=n_div,
mlp_ratio=mlp_ratio,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
layer_scale_init_value=layer_scale_init_value,
norm_layer=norm_layer,
act_layer=act_layer,
pconv_fw_type=pconv_fw_type,
use_merge=False if i == 0 else True,
merge_size=merge_size,
)
stages_list.append(stage)
self.feature_info += [dict(num_chs=dim, reduction=2**(i+2), module=f'stages.{i}')]
self.stages = nn.Sequential(*stages_list)
# building last several layers
self.num_features = prev_chs = int(embed_dim * 2 ** (self.num_stages - 1))
self.head_hidden_size = out_chs = feature_dim # 1280
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=False)
self.act = act_layer()
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(out_chs, num_classes, bias=True) if num_classes > 0 else nn.Identity()
self._initialize_weights()
def _initialize_weights(self):
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict[str, Any]:
matcher = dict(
stem=r'patch_embed',
blocks=[
(r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None),
(r'conv_head', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
# cannot meaningfully change pooling of efficient head after creation
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to compatible intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.stages), indices)
# forward pass
x = self.patch_embed(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
stages = self.stages
else:
stages = self.stages[:max_index + 1]
for feat_idx, stage in enumerate(stages):
x = stage(x)
if feat_idx in take_indices:
intermediates.append(x)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.stages), indices)
self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0
if prune_head:
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x, flatten=True)
else:
x = self.stages(x)
return x
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
x = self.global_pool(x)
x = self.conv_head(x)
x = self.act(x)
x = self.flatten(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return x if pre_logits else self.classifier(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: nn.Module) -> Dict[str, torch.Tensor]:
if 'avgpool_pre_head' in state_dict:
return state_dict
out_dict = {
'conv_head.weight': state_dict.pop('avgpool_pre_head.1.weight'),
'classifier.weight': state_dict.pop('head.weight'),
'classifier.bias': state_dict.pop('head.bias')
}
stage_mapping = {
'stages.1.': 'stages.1.down.',
'stages.2.': 'stages.1.',
'stages.3.': 'stages.2.down.',
'stages.4.': 'stages.2.',
'stages.5.': 'stages.3.down.',
'stages.6.': 'stages.3.'
}
for k, v in state_dict.items():
for old_prefix, new_prefix in stage_mapping.items():
if k.startswith(old_prefix):
k = k.replace(old_prefix, new_prefix)
break
out_dict[k] = v
return out_dict
def _cfg(url: str = '', **kwargs: Any) -> Dict[str, Any]:
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 1.0, 'interpolation': 'bicubic', 'test_crop_pct': 0.9,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'classifier',
'paper_ids': 'arXiv:2303.03667',
'paper_name': "Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks",
'origin_url': 'https://github.com/JierunChen/FasterNet',
**kwargs
}
default_cfgs = generate_default_cfgs({
'fasternet_t0.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_t0-epoch.281-val_acc1.71.9180.pth',
),
'fasternet_t1.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_t1-epoch.291-val_acc1.76.2180.pth',
),
'fasternet_t2.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_t2-epoch.289-val_acc1.78.8860.pth',
),
'fasternet_s.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_s-epoch.299-val_acc1.81.2840.pth',
),
'fasternet_m.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_m-epoch.291-val_acc1.82.9620.pth',
),
'fasternet_l.in1k': _cfg(
# hf_hub_id='timm/',
url='https://github.com/JierunChen/FasterNet/releases/download/v1.0/fasternet_l-epoch.299-val_acc1.83.5060.pth',
),
})
def _create_fasternet(variant: str, pretrained: bool = False, **kwargs: Any) -> FasterNet:
model = build_model_with_cfg(
FasterNet, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs,
)
return model
@register_model
def fasternet_t0(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=40, depths=(1, 2, 8, 2), drop_path_rate=0.0, act_layer=nn.GELU)
return _create_fasternet('fasternet_t0', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def fasternet_t1(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=64, depths=(1, 2, 8, 2), drop_path_rate=0.02, act_layer=nn.GELU)
return _create_fasternet('fasternet_t1', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def fasternet_t2(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=96, depths=(1, 2, 8, 2), drop_path_rate=0.05)
return _create_fasternet('fasternet_t2', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def fasternet_s(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=128, depths=(1, 2, 13, 2), drop_path_rate=0.1)
return _create_fasternet('fasternet_s', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def fasternet_m(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=144, depths=(3, 4, 18, 3), drop_path_rate=0.2)
return _create_fasternet('fasternet_m', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def fasternet_l(pretrained: bool = False, **kwargs: Any) -> FasterNet:
model_args = dict(embed_dim=192, depths=(3, 4, 18, 3), drop_path_rate=0.3)
return _create_fasternet('fasternet_l', pretrained=pretrained, **dict(model_args, **kwargs))

View File

@ -471,6 +471,7 @@ class SwiftFormer(nn.Module):
if intermediates_only:
return intermediates
if feat_idx == last_idx:
x = self.norm(x)
return x, intermediates