mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add 34/34d pre-act resnet variants
This commit is contained in:
parent
72f0edb7e8
commit
abdf33145c
@ -700,6 +700,10 @@ default_cfgs = generate_default_cfgs({
|
|||||||
interpolation='bicubic', crop_pct=0.95),
|
interpolation='bicubic', crop_pct=0.95),
|
||||||
'resnetv2_18d.untrained': _cfg(
|
'resnetv2_18d.untrained': _cfg(
|
||||||
interpolation='bicubic', crop_pct=0.95, first_conv='stem.conv1'),
|
interpolation='bicubic', crop_pct=0.95, first_conv='stem.conv1'),
|
||||||
|
'resnetv2_34.untrained': _cfg(
|
||||||
|
interpolation='bicubic', crop_pct=0.95),
|
||||||
|
'resnetv2_34d.untrained': _cfg(
|
||||||
|
interpolation='bicubic', crop_pct=0.95, first_conv='stem.conv1'),
|
||||||
'resnetv2_50.a1h_in1k': _cfg(
|
'resnetv2_50.a1h_in1k': _cfg(
|
||||||
hf_hub_id='timm/',
|
hf_hub_id='timm/',
|
||||||
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
||||||
@ -784,6 +788,24 @@ def resnetv2_18d(pretrained=False, **kwargs) -> ResNetV2:
|
|||||||
return _create_resnetv2('resnetv2_18d', pretrained=pretrained, **dict(model_args, **kwargs))
|
return _create_resnetv2('resnetv2_18d', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetv2_34(pretrained=False, **kwargs) -> ResNetV2:
|
||||||
|
model_args = dict(
|
||||||
|
layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
||||||
|
conv_layer=create_conv2d, norm_layer=BatchNormAct2d
|
||||||
|
)
|
||||||
|
return _create_resnetv2('resnetv2_34', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetv2_34d(pretrained=False, **kwargs) -> ResNetV2:
|
||||||
|
model_args = dict(
|
||||||
|
layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
||||||
|
conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True
|
||||||
|
)
|
||||||
|
return _create_resnetv2('resnetv2_34d', pretrained=pretrained, **dict(model_args, **kwargs))
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2:
|
def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2:
|
||||||
model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d)
|
model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user