mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Merge pull request #263 from rwightman/fixes_oct2020
Fixes for upcoming PyPi release
This commit is contained in:
commit
af3299ba4a
@ -24,7 +24,7 @@ MAX_FWD_FEAT_SIZE = 448
|
||||
|
||||
|
||||
@pytest.mark.timeout(120)
|
||||
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
|
||||
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS[:-1]))
|
||||
@pytest.mark.parametrize('batch_size', [1])
|
||||
def test_model_forward(model_name, batch_size):
|
||||
"""Run a single forward pass with each model"""
|
||||
|
@ -277,11 +277,12 @@ def build_model_with_cfg(
|
||||
if pruned:
|
||||
model = adapt_model_from_file(model, variant)
|
||||
|
||||
# for classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
|
||||
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000))
|
||||
if pretrained:
|
||||
load_pretrained(
|
||||
model,
|
||||
num_classes=kwargs.get('num_classes', 0),
|
||||
in_chans=kwargs.get('in_chans', 3),
|
||||
num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3),
|
||||
filter_fn=pretrained_filter_fn, strict=pretrained_strict)
|
||||
|
||||
if features:
|
||||
|
@ -776,6 +776,7 @@ def _create_hrnet(variant, pretrained, **model_kwargs):
|
||||
strict = True
|
||||
if model_kwargs.pop('features_only', False):
|
||||
model_cls = HighResolutionNetFeatures
|
||||
model_kwargs['num_classes'] = 0
|
||||
strict = False
|
||||
|
||||
return build_model_with_cfg(
|
||||
|
@ -6,9 +6,14 @@ from .activations_jit import *
|
||||
from .activations_me import *
|
||||
from .config import is_exportable, is_scriptable, is_no_jit
|
||||
|
||||
# PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7. This code
|
||||
# will use native version if present. Eventually, the custom Swish layers will be removed
|
||||
# and only native 'silu' will be used.
|
||||
_has_silu = 'silu' in dir(torch.nn.functional)
|
||||
|
||||
_ACT_FN_DEFAULT = dict(
|
||||
swish=swish,
|
||||
silu=F.silu if _has_silu else swish,
|
||||
swish=F.silu if _has_silu else swish,
|
||||
mish=mish,
|
||||
relu=F.relu,
|
||||
relu6=F.relu6,
|
||||
@ -26,7 +31,8 @@ _ACT_FN_DEFAULT = dict(
|
||||
)
|
||||
|
||||
_ACT_FN_JIT = dict(
|
||||
swish=swish_jit,
|
||||
silu=F.silu if _has_silu else swish_jit,
|
||||
swish=F.silu if _has_silu else swish_jit,
|
||||
mish=mish_jit,
|
||||
hard_sigmoid=hard_sigmoid_jit,
|
||||
hard_swish=hard_swish_jit,
|
||||
@ -34,7 +40,8 @@ _ACT_FN_JIT = dict(
|
||||
)
|
||||
|
||||
_ACT_FN_ME = dict(
|
||||
swish=swish_me,
|
||||
silu=F.silu if _has_silu else swish_me,
|
||||
swish=F.silu if _has_silu else swish_me,
|
||||
mish=mish_me,
|
||||
hard_sigmoid=hard_sigmoid_me,
|
||||
hard_swish=hard_swish_me,
|
||||
@ -42,7 +49,8 @@ _ACT_FN_ME = dict(
|
||||
)
|
||||
|
||||
_ACT_LAYER_DEFAULT = dict(
|
||||
swish=Swish,
|
||||
silu=nn.SiLU if _has_silu else Swish,
|
||||
swish=nn.SiLU if _has_silu else Swish,
|
||||
mish=Mish,
|
||||
relu=nn.ReLU,
|
||||
relu6=nn.ReLU6,
|
||||
@ -60,7 +68,8 @@ _ACT_LAYER_DEFAULT = dict(
|
||||
)
|
||||
|
||||
_ACT_LAYER_JIT = dict(
|
||||
swish=SwishJit,
|
||||
silu=nn.SiLU if _has_silu else SwishJit,
|
||||
swish=nn.SiLU if _has_silu else SwishJit,
|
||||
mish=MishJit,
|
||||
hard_sigmoid=HardSigmoidJit,
|
||||
hard_swish=HardSwishJit,
|
||||
@ -68,7 +77,8 @@ _ACT_LAYER_JIT = dict(
|
||||
)
|
||||
|
||||
_ACT_LAYER_ME = dict(
|
||||
swish=SwishMe,
|
||||
silu=nn.SiLU if _has_silu else SwishMe,
|
||||
swish=nn.SiLU if _has_silu else SwishMe,
|
||||
mish=MishMe,
|
||||
hard_sigmoid=HardSigmoidMe,
|
||||
hard_swish=HardSwishMe,
|
||||
|
@ -37,7 +37,7 @@ def _cfg(url='', **kwargs):
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': .9, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': '', 'classifier': 'head',
|
||||
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
@ -48,7 +48,8 @@ default_cfgs = {
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
|
||||
),
|
||||
'vit_base_patch16_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_base_p16_224-4e355ebd.pth',
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||
),
|
||||
'vit_base_patch16_384': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
|
||||
@ -56,7 +57,9 @@ default_cfgs = {
|
||||
'vit_base_patch32_384': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
|
||||
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||
'vit_large_patch16_224': _cfg(),
|
||||
'vit_large_patch16_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
'vit_large_patch16_384': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
|
||||
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||
@ -206,7 +209,7 @@ class VisionTransformer(nn.Module):
|
||||
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.embed_dim = embed_dim
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
|
||||
if hybrid_backbone is not None:
|
||||
self.patch_embed = HybridEmbed(
|
||||
@ -305,10 +308,9 @@ def vit_small_patch16_224(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_base_patch16_224(pretrained=False, **kwargs):
|
||||
if pretrained:
|
||||
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
|
||||
kwargs.setdefault('qk_scale', 768 ** -0.5)
|
||||
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_base_patch16_224']
|
||||
if pretrained:
|
||||
load_pretrained(
|
||||
@ -340,8 +342,12 @@ def vit_base_patch32_384(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_large_patch16_224(pretrained=False, **kwargs):
|
||||
model = VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch16_224']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
return model
|
||||
|
||||
|
||||
|
@ -1 +1 @@
|
||||
__version__ = '0.2.2'
|
||||
__version__ = '0.3.0'
|
||||
|
Loading…
x
Reference in New Issue
Block a user