Some missed reset_classifier() type annotations

fcossio-vit-maxpool
Ross Wightman 2024-06-16 10:39:27 -07:00
parent 71101ebba0
commit b1a6f4a946
16 changed files with 33 additions and 23 deletions

View File

@ -156,7 +156,7 @@ class EfficientNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -273,7 +273,7 @@ class GhostNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
# cannot meaningfully change pooling of efficient head after creation
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)

View File

@ -739,7 +739,7 @@ class HighResolutionNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -280,7 +280,7 @@ class InceptionV4(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -26,9 +26,9 @@ Adapted from https://github.com/sail-sg/metaformer, original copyright below
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
@ -548,7 +548,7 @@ class MetaFormer(nn.Module):
# if using MlpHead, dropout is handled by MlpHead
if num_classes > 0:
if self.use_mlp_head:
# FIXME hidden size
# FIXME not actually returning mlp hidden state right now as pre-logits.
final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate)
self.head_hidden_size = self.num_features
else:
@ -583,7 +583,7 @@ class MetaFormer(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes=0, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
if global_pool is not None:
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()

View File

@ -518,7 +518,7 @@ class NASNetALarge(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -307,7 +307,7 @@ class PNASNet5Large(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -514,7 +514,7 @@ class RegNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, pool_type=global_pool)
def forward_intermediates(

View File

@ -12,6 +12,7 @@ Copyright 2020 Ross Wightman
from functools import partial
from math import ceil
from typing import Optional
import torch
import torch.nn as nn
@ -229,7 +230,7 @@ class RexNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)

View File

@ -161,7 +161,7 @@ class SelecSls(nn.Module):
def get_classifier(self) -> nn.Module:
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -337,7 +337,7 @@ class SENet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -381,7 +381,7 @@ class VisionTransformerRelPos(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')

View File

@ -536,7 +536,7 @@ class VisionTransformerSAM(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes=0, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, global_pool)
def forward_intermediates(

View File

@ -11,7 +11,7 @@ for some reference, rewrote most of the code.
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import List
from typing import List, Optional
import torch
import torch.nn as nn
@ -134,9 +134,17 @@ class OsaStage(nn.Module):
else:
drop_path = None
blocks += [OsaBlock(
in_chs, mid_chs, out_chs, layer_per_block, residual=residual and i > 0, depthwise=depthwise,
attn=attn if last_block else '', norm_layer=norm_layer, act_layer=act_layer, drop_path=drop_path)
]
in_chs,
mid_chs,
out_chs,
layer_per_block,
residual=residual and i > 0,
depthwise=depthwise,
attn=attn if last_block else '',
norm_layer=norm_layer,
act_layer=act_layer,
drop_path=drop_path
)]
in_chs = out_chs
self.blocks = nn.Sequential(*blocks)
@ -252,8 +260,9 @@ class VovNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def reset_classifier(self, num_classes, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)

View File

@ -174,7 +174,7 @@ class Xception(nn.Module):
def get_classifier(self) -> nn.Module:
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -274,7 +274,7 @@ class XceptionAligned(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, pool_type=global_pool)
def forward_features(self, x):