mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Scheduler update, add v2 factory method, support scheduling on updates instead of just epochs. Add LR to summary csv. Add lr_base scaling calculations to train script. Fix #1168
This commit is contained in:
parent
4f18d6dc5f
commit
b1b024dfed
@ -193,7 +193,8 @@ def create_optimizer_v2(
|
||||
filter_bias_and_bn: bool = True,
|
||||
layer_decay: Optional[float] = None,
|
||||
param_group_fn: Optional[Callable] = None,
|
||||
**kwargs):
|
||||
**kwargs,
|
||||
):
|
||||
""" Create an optimizer.
|
||||
|
||||
TODO currently the model is passed in and all parameters are selected for optimization.
|
||||
|
@ -5,4 +5,4 @@ from .poly_lr import PolyLRScheduler
|
||||
from .step_lr import StepLRScheduler
|
||||
from .tanh_lr import TanhLRScheduler
|
||||
|
||||
from .scheduler_factory import create_scheduler
|
||||
from .scheduler_factory import create_scheduler, create_scheduler_v2, scheduler_kwargs
|
||||
|
@ -26,33 +26,42 @@ class CosineLRScheduler(Scheduler):
|
||||
k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
k_decay=1.0,
|
||||
initialize=True) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
k_decay=1.0,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
optimizer,
|
||||
param_group_field="lr",
|
||||
t_in_epochs=t_in_epochs,
|
||||
noise_range_t=noise_range_t,
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
initialize=initialize,
|
||||
)
|
||||
|
||||
assert t_initial > 0
|
||||
assert lr_min >= 0
|
||||
if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1:
|
||||
_logger.warning("Cosine annealing scheduler will have no effect on the learning "
|
||||
"rate since t_initial = t_mul = eta_mul = 1.")
|
||||
_logger.warning(
|
||||
"Cosine annealing scheduler will have no effect on the learning "
|
||||
"rate since t_initial = t_mul = eta_mul = 1.")
|
||||
self.t_initial = t_initial
|
||||
self.lr_min = lr_min
|
||||
self.cycle_mul = cycle_mul
|
||||
@ -61,7 +70,6 @@ class CosineLRScheduler(Scheduler):
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.warmup_prefix = warmup_prefix
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.k_decay = k_decay
|
||||
if self.warmup_t:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
||||
@ -99,18 +107,6 @@ class CosineLRScheduler(Scheduler):
|
||||
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
cycles = max(1, cycles or self.cycle_limit)
|
||||
if self.cycle_mul == 1.0:
|
||||
|
@ -11,29 +11,37 @@ class MultiStepLRScheduler(Scheduler):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
decay_t: List[int],
|
||||
decay_rate: float = 1.,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
decay_t: List[int],
|
||||
decay_rate: float = 1.,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=True,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
optimizer,
|
||||
param_group_field="lr",
|
||||
t_in_epochs=t_in_epochs,
|
||||
noise_range_t=noise_range_t,
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
initialize=initialize,
|
||||
)
|
||||
|
||||
self.decay_t = decay_t
|
||||
self.decay_rate = decay_rate
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.warmup_prefix = warmup_prefix
|
||||
if self.warmup_t:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
||||
super().update_groups(self.warmup_lr_init)
|
||||
@ -43,23 +51,13 @@ class MultiStepLRScheduler(Scheduler):
|
||||
def get_curr_decay_steps(self, t):
|
||||
# find where in the array t goes,
|
||||
# assumes self.decay_t is sorted
|
||||
return bisect.bisect_right(self.decay_t, t+1)
|
||||
return bisect.bisect_right(self.decay_t, t + 1)
|
||||
|
||||
def _get_lr(self, t):
|
||||
if t < self.warmup_t:
|
||||
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
|
||||
else:
|
||||
if self.warmup_prefix:
|
||||
t = t - self.warmup_t
|
||||
lrs = [v * (self.decay_rate ** self.get_curr_decay_steps(t)) for v in self.base_values]
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
@ -12,24 +12,25 @@ from .scheduler import Scheduler
|
||||
class PlateauLRScheduler(Scheduler):
|
||||
"""Decay the LR by a factor every time the validation loss plateaus."""
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
decay_rate=0.1,
|
||||
patience_t=10,
|
||||
verbose=True,
|
||||
threshold=1e-4,
|
||||
cooldown_t=0,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
lr_min=0,
|
||||
mode='max',
|
||||
noise_range_t=None,
|
||||
noise_type='normal',
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=None,
|
||||
initialize=True,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
decay_rate=0.1,
|
||||
patience_t=10,
|
||||
verbose=True,
|
||||
threshold=1e-4,
|
||||
cooldown_t=0,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
lr_min=0,
|
||||
mode='max',
|
||||
noise_range_t=None,
|
||||
noise_type='normal',
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=None,
|
||||
initialize=True,
|
||||
):
|
||||
super().__init__(
|
||||
optimizer,
|
||||
'lr',
|
||||
@ -89,6 +90,9 @@ class PlateauLRScheduler(Scheduler):
|
||||
if self._is_apply_noise(epoch):
|
||||
self._apply_noise(epoch)
|
||||
|
||||
def step_update(self, num_updates: int, metric: float = None):
|
||||
return None
|
||||
|
||||
def _apply_noise(self, epoch):
|
||||
noise = self._calculate_noise(epoch)
|
||||
|
||||
@ -101,3 +105,6 @@ class PlateauLRScheduler(Scheduler):
|
||||
new_lr = old_lr + old_lr * noise
|
||||
param_group['lr'] = new_lr
|
||||
self.restore_lr = restore_lr
|
||||
|
||||
def _get_lr(self, t: int) -> float:
|
||||
assert False, 'should not be called as step is overridden'
|
||||
|
@ -21,28 +21,36 @@ class PolyLRScheduler(Scheduler):
|
||||
k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
power: float = 0.5,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
k_decay=1.0,
|
||||
initialize=True) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
power: float = 0.5,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
k_decay=1.0,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
optimizer,
|
||||
param_group_field="lr",
|
||||
t_in_epochs=t_in_epochs,
|
||||
noise_range_t=noise_range_t,
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
initialize=initialize
|
||||
)
|
||||
|
||||
assert t_initial > 0
|
||||
assert lr_min >= 0
|
||||
@ -58,7 +66,6 @@ class PolyLRScheduler(Scheduler):
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.warmup_prefix = warmup_prefix
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.k_decay = k_decay
|
||||
if self.warmup_t:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
||||
@ -96,18 +103,6 @@ class PolyLRScheduler(Scheduler):
|
||||
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
cycles = max(1, cycles or self.cycle_limit)
|
||||
if self.cycle_mul == 1.0:
|
||||
|
@ -1,9 +1,11 @@
|
||||
from typing import Dict, Any
|
||||
import abc
|
||||
from abc import ABC
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Scheduler:
|
||||
class Scheduler(ABC):
|
||||
""" Parameter Scheduler Base Class
|
||||
A scheduler base class that can be used to schedule any optimizer parameter groups.
|
||||
|
||||
@ -22,15 +24,18 @@ class Scheduler:
|
||||
* https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
param_group_field: str,
|
||||
noise_range_t=None,
|
||||
noise_type='normal',
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=None,
|
||||
initialize: bool = True) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
param_group_field: str,
|
||||
t_in_epochs: bool = True,
|
||||
noise_range_t=None,
|
||||
noise_type='normal',
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=None,
|
||||
initialize: bool = True,
|
||||
) -> None:
|
||||
self.optimizer = optimizer
|
||||
self.param_group_field = param_group_field
|
||||
self._initial_param_group_field = f"initial_{param_group_field}"
|
||||
@ -45,6 +50,7 @@ class Scheduler:
|
||||
raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]")
|
||||
self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups]
|
||||
self.metric = None # any point to having this for all?
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.noise_range_t = noise_range_t
|
||||
self.noise_pct = noise_pct
|
||||
self.noise_type = noise_type
|
||||
@ -58,22 +64,26 @@ class Scheduler:
|
||||
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
||||
self.__dict__.update(state_dict)
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
return None
|
||||
@abc.abstractmethod
|
||||
def _get_lr(self, t: int) -> float:
|
||||
pass
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
return None
|
||||
def _get_values(self, t: int, on_epoch: bool = True) -> Optional[float]:
|
||||
proceed = (on_epoch and self.t_in_epochs) or (not on_epoch and not self.t_in_epochs)
|
||||
if not proceed:
|
||||
return None
|
||||
return self._get_lr(t)
|
||||
|
||||
def step(self, epoch: int, metric: float = None) -> None:
|
||||
self.metric = metric
|
||||
values = self.get_epoch_values(epoch)
|
||||
values = self._get_values(epoch, on_epoch=True)
|
||||
if values is not None:
|
||||
values = self._add_noise(values, epoch)
|
||||
self.update_groups(values)
|
||||
|
||||
def step_update(self, num_updates: int, metric: float = None):
|
||||
self.metric = metric
|
||||
values = self.get_update_values(num_updates)
|
||||
values = self._get_values(num_updates, on_epoch=False)
|
||||
if values is not None:
|
||||
values = self._add_noise(values, num_updates)
|
||||
self.update_groups(values)
|
||||
|
@ -1,6 +1,10 @@
|
||||
""" Scheduler Factory
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
"""
|
||||
from typing import List, Union
|
||||
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from .cosine_lr import CosineLRScheduler
|
||||
from .multistep_lr import MultiStepLRScheduler
|
||||
from .plateau_lr import PlateauLRScheduler
|
||||
@ -9,99 +13,191 @@ from .step_lr import StepLRScheduler
|
||||
from .tanh_lr import TanhLRScheduler
|
||||
|
||||
|
||||
def create_scheduler(args, optimizer):
|
||||
num_epochs = args.epochs
|
||||
def scheduler_kwargs(cfg):
|
||||
""" cfg/argparse to kwargs helper
|
||||
Convert scheduler args in argparse args or cfg (.dot) like object to keyword args.
|
||||
"""
|
||||
eval_metric = getattr(cfg, 'eval_metric', 'top1')
|
||||
plateau_mode = 'min' if 'loss' in eval_metric else 'max'
|
||||
kwargs = dict(
|
||||
sched=cfg.sched,
|
||||
num_epochs=getattr(cfg, 'epochs', 100),
|
||||
decay_epochs=getattr(cfg, 'decay_epochs', 30),
|
||||
decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]),
|
||||
warmup_epochs=getattr(cfg, 'warmup_epochs', 5),
|
||||
cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0),
|
||||
patience_epochs=getattr(cfg, 'patience_epochs', 10),
|
||||
decay_rate=getattr(cfg, 'decay_rate', 0.1),
|
||||
min_lr=getattr(cfg, 'min_lr', 0.),
|
||||
warmup_lr=getattr(cfg, 'warmup_lr', 1e-5),
|
||||
warmup_prefix=getattr(cfg, 'warmup_prefix', False),
|
||||
noise=getattr(cfg, 'lr_noise', None),
|
||||
noise_pct=getattr(cfg, 'lr_noise_pct', 0.67),
|
||||
noise_std=getattr(cfg, 'lr_noise_std', 1.),
|
||||
noise_seed=getattr(cfg, 'seed', 42),
|
||||
cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.),
|
||||
cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1),
|
||||
cycle_limit=getattr(cfg, 'lr_cycle_limit', 1),
|
||||
k_decay=getattr(cfg, 'lr_k_decay', 1.0),
|
||||
plateau_mode=plateau_mode,
|
||||
step_on_epochs=not getattr(cfg, 'sched_on_updates', False),
|
||||
)
|
||||
return kwargs
|
||||
|
||||
if getattr(args, 'lr_noise', None) is not None:
|
||||
lr_noise = getattr(args, 'lr_noise')
|
||||
if isinstance(lr_noise, (list, tuple)):
|
||||
noise_range = [n * num_epochs for n in lr_noise]
|
||||
|
||||
def create_scheduler(
|
||||
args,
|
||||
optimizer: Optimizer,
|
||||
updates_per_epoch: int = 0,
|
||||
):
|
||||
return create_scheduler_v2(
|
||||
optimizer=optimizer,
|
||||
**scheduler_kwargs(args),
|
||||
updates_per_epoch=updates_per_epoch,
|
||||
)
|
||||
|
||||
|
||||
def create_scheduler_v2(
|
||||
optimizer: Optimizer,
|
||||
sched: str = 'cosine',
|
||||
num_epochs: int = 300,
|
||||
decay_epochs: int = 90,
|
||||
decay_milestones: List[int] = (90, 180, 270),
|
||||
cooldown_epochs: int = 0,
|
||||
patience_epochs: int = 10,
|
||||
decay_rate: float = 0.1,
|
||||
min_lr: float = 0,
|
||||
warmup_lr: float = 1e-5,
|
||||
warmup_epochs: int = 0,
|
||||
warmup_prefix: bool = False,
|
||||
noise: Union[float, List[float]] = None,
|
||||
noise_pct: float = 0.67,
|
||||
noise_std: float = 1.,
|
||||
noise_seed: int = 42,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 0.1,
|
||||
cycle_limit: int = 1,
|
||||
k_decay: float = 1.0,
|
||||
plateau_mode: str = 'max',
|
||||
step_on_epochs: bool = True,
|
||||
updates_per_epoch: int = 0,
|
||||
):
|
||||
t_initial = num_epochs
|
||||
warmup_t = warmup_epochs
|
||||
decay_t = decay_epochs
|
||||
cooldown_t = cooldown_epochs
|
||||
|
||||
if not step_on_epochs:
|
||||
assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches'
|
||||
t_initial = t_initial * updates_per_epoch
|
||||
warmup_t = warmup_t * updates_per_epoch
|
||||
decay_t = decay_t * updates_per_epoch
|
||||
decay_milestones = [d * updates_per_epoch for d in decay_milestones]
|
||||
cooldown_t = cooldown_t * updates_per_epoch
|
||||
|
||||
# warmup args
|
||||
warmup_args = dict(
|
||||
warmup_lr_init=warmup_lr,
|
||||
warmup_t=warmup_t,
|
||||
warmup_prefix=warmup_prefix,
|
||||
)
|
||||
|
||||
# setup noise args for supporting schedulers
|
||||
if noise is not None:
|
||||
if isinstance(noise, (list, tuple)):
|
||||
noise_range = [n * t_initial for n in noise]
|
||||
if len(noise_range) == 1:
|
||||
noise_range = noise_range[0]
|
||||
else:
|
||||
noise_range = lr_noise * num_epochs
|
||||
noise_range = noise * t_initial
|
||||
else:
|
||||
noise_range = None
|
||||
noise_args = dict(
|
||||
noise_range_t=noise_range,
|
||||
noise_pct=getattr(args, 'lr_noise_pct', 0.67),
|
||||
noise_std=getattr(args, 'lr_noise_std', 1.),
|
||||
noise_seed=getattr(args, 'seed', 42),
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
)
|
||||
|
||||
# setup cycle args for supporting schedulers
|
||||
cycle_args = dict(
|
||||
cycle_mul=getattr(args, 'lr_cycle_mul', 1.),
|
||||
cycle_decay=getattr(args, 'lr_cycle_decay', 0.1),
|
||||
cycle_limit=getattr(args, 'lr_cycle_limit', 1),
|
||||
cycle_mul=cycle_mul,
|
||||
cycle_decay=cycle_decay,
|
||||
cycle_limit=cycle_limit,
|
||||
)
|
||||
|
||||
lr_scheduler = None
|
||||
if args.sched == 'cosine':
|
||||
if sched == 'cosine':
|
||||
lr_scheduler = CosineLRScheduler(
|
||||
optimizer,
|
||||
t_initial=num_epochs,
|
||||
lr_min=args.min_lr,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
k_decay=getattr(args, 'lr_k_decay', 1.0),
|
||||
t_initial=t_initial,
|
||||
lr_min=min_lr,
|
||||
t_in_epochs=step_on_epochs,
|
||||
**cycle_args,
|
||||
**warmup_args,
|
||||
**noise_args,
|
||||
k_decay=k_decay,
|
||||
)
|
||||
num_epochs = lr_scheduler.get_cycle_length() + args.cooldown_epochs
|
||||
elif args.sched == 'tanh':
|
||||
elif sched == 'tanh':
|
||||
lr_scheduler = TanhLRScheduler(
|
||||
optimizer,
|
||||
t_initial=num_epochs,
|
||||
lr_min=args.min_lr,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
t_in_epochs=True,
|
||||
t_initial=t_initial,
|
||||
lr_min=min_lr,
|
||||
t_in_epochs=step_on_epochs,
|
||||
**cycle_args,
|
||||
**warmup_args,
|
||||
**noise_args,
|
||||
)
|
||||
num_epochs = lr_scheduler.get_cycle_length() + args.cooldown_epochs
|
||||
elif args.sched == 'step':
|
||||
elif sched == 'step':
|
||||
lr_scheduler = StepLRScheduler(
|
||||
optimizer,
|
||||
decay_t=args.decay_epochs,
|
||||
decay_rate=args.decay_rate,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
decay_t=decay_t,
|
||||
decay_rate=decay_rate,
|
||||
t_in_epochs=step_on_epochs,
|
||||
**warmup_args,
|
||||
**noise_args,
|
||||
)
|
||||
elif args.sched == 'multistep':
|
||||
elif sched == 'multistep':
|
||||
lr_scheduler = MultiStepLRScheduler(
|
||||
optimizer,
|
||||
decay_t=args.decay_milestones,
|
||||
decay_rate=args.decay_rate,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
decay_t=decay_milestones,
|
||||
decay_rate=decay_rate,
|
||||
t_in_epochs=step_on_epochs,
|
||||
**warmup_args,
|
||||
**noise_args,
|
||||
)
|
||||
elif args.sched == 'plateau':
|
||||
mode = 'min' if 'loss' in getattr(args, 'eval_metric', '') else 'max'
|
||||
elif sched == 'plateau':
|
||||
assert step_on_epochs, 'Plateau LR only supports step per epoch.'
|
||||
warmup_args.pop('warmup_prefix', False)
|
||||
lr_scheduler = PlateauLRScheduler(
|
||||
optimizer,
|
||||
decay_rate=args.decay_rate,
|
||||
patience_t=args.patience_epochs,
|
||||
lr_min=args.min_lr,
|
||||
mode=mode,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
decay_rate=decay_rate,
|
||||
patience_t=patience_epochs,
|
||||
cooldown_t=0,
|
||||
**warmup_args,
|
||||
lr_min=min_lr,
|
||||
mode=plateau_mode,
|
||||
**noise_args,
|
||||
)
|
||||
elif args.sched == 'poly':
|
||||
elif sched == 'poly':
|
||||
lr_scheduler = PolyLRScheduler(
|
||||
optimizer,
|
||||
power=args.decay_rate, # overloading 'decay_rate' as polynomial power
|
||||
t_initial=num_epochs,
|
||||
lr_min=args.min_lr,
|
||||
warmup_lr_init=args.warmup_lr,
|
||||
warmup_t=args.warmup_epochs,
|
||||
k_decay=getattr(args, 'lr_k_decay', 1.0),
|
||||
power=decay_rate, # overloading 'decay_rate' as polynomial power
|
||||
t_initial=t_initial,
|
||||
lr_min=min_lr,
|
||||
t_in_epochs=step_on_epochs,
|
||||
k_decay=k_decay,
|
||||
**cycle_args,
|
||||
**warmup_args,
|
||||
**noise_args,
|
||||
)
|
||||
num_epochs = lr_scheduler.get_cycle_length() + args.cooldown_epochs
|
||||
|
||||
if hasattr(lr_scheduler, 'get_cycle_length'):
|
||||
# for cycle based schedulers (cosine, tanh, poly) recalculate total epochs w/ cycles & cooldown
|
||||
t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t
|
||||
if step_on_epochs:
|
||||
num_epochs = t_with_cycles_and_cooldown
|
||||
else:
|
||||
num_epochs = t_with_cycles_and_cooldown // updates_per_epoch
|
||||
|
||||
return lr_scheduler, num_epochs
|
||||
|
@ -14,29 +14,37 @@ class StepLRScheduler(Scheduler):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
decay_t: float,
|
||||
decay_rate: float = 1.,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
decay_t: float,
|
||||
decay_rate: float = 1.,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=True,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
optimizer,
|
||||
param_group_field="lr",
|
||||
t_in_epochs=t_in_epochs,
|
||||
noise_range_t=noise_range_t,
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
initialize=initialize,
|
||||
)
|
||||
|
||||
self.decay_t = decay_t
|
||||
self.decay_rate = decay_rate
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.t_in_epochs = t_in_epochs
|
||||
self.warmup_prefix = warmup_prefix
|
||||
if self.warmup_t:
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values]
|
||||
super().update_groups(self.warmup_lr_init)
|
||||
@ -47,17 +55,7 @@ class StepLRScheduler(Scheduler):
|
||||
if t < self.warmup_t:
|
||||
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
|
||||
else:
|
||||
if self.warmup_prefix:
|
||||
t = t - self.warmup_t
|
||||
lrs = [v * (self.decay_rate ** (t // self.decay_t)) for v in self.base_values]
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
@ -21,28 +21,36 @@ class TanhLRScheduler(Scheduler):
|
||||
This is described in the paper https://arxiv.org/abs/1806.01593
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
lb: float = -7.,
|
||||
ub: float = 3.,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
t_initial: int,
|
||||
lb: float = -7.,
|
||||
ub: float = 3.,
|
||||
lr_min: float = 0.,
|
||||
cycle_mul: float = 1.,
|
||||
cycle_decay: float = 1.,
|
||||
cycle_limit: int = 1,
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
t_in_epochs=True,
|
||||
noise_range_t=None,
|
||||
noise_pct=0.67,
|
||||
noise_std=1.0,
|
||||
noise_seed=42,
|
||||
initialize=True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
optimizer, param_group_field="lr",
|
||||
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed,
|
||||
initialize=initialize)
|
||||
optimizer,
|
||||
param_group_field="lr",
|
||||
t_in_epochs=t_in_epochs,
|
||||
noise_range_t=noise_range_t,
|
||||
noise_pct=noise_pct,
|
||||
noise_std=noise_std,
|
||||
noise_seed=noise_seed,
|
||||
initialize=initialize,
|
||||
)
|
||||
|
||||
assert t_initial > 0
|
||||
assert lr_min >= 0
|
||||
@ -60,7 +68,6 @@ class TanhLRScheduler(Scheduler):
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.warmup_prefix = warmup_prefix
|
||||
self.t_in_epochs = t_in_epochs
|
||||
if self.warmup_t:
|
||||
t_v = self.base_values if self.warmup_prefix else self._get_lr(self.warmup_t)
|
||||
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in t_v]
|
||||
@ -97,18 +104,6 @@ class TanhLRScheduler(Scheduler):
|
||||
lrs = [self.lr_min for _ in self.base_values]
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
if self.t_in_epochs:
|
||||
return self._get_lr(epoch)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_update_values(self, num_updates: int):
|
||||
if not self.t_in_epochs:
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
cycles = max(1, cycles or self.cycle_limit)
|
||||
if self.cycle_mul == 1.0:
|
||||
|
@ -10,6 +10,7 @@ try:
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
def get_outdir(path, *paths, inc=False):
|
||||
outdir = os.path.join(path, *paths)
|
||||
if not os.path.exists(outdir):
|
||||
@ -26,10 +27,20 @@ def get_outdir(path, *paths, inc=False):
|
||||
return outdir
|
||||
|
||||
|
||||
def update_summary(epoch, train_metrics, eval_metrics, filename, write_header=False, log_wandb=False):
|
||||
def update_summary(
|
||||
epoch,
|
||||
train_metrics,
|
||||
eval_metrics,
|
||||
filename,
|
||||
lr=None,
|
||||
write_header=False,
|
||||
log_wandb=False,
|
||||
):
|
||||
rowd = OrderedDict(epoch=epoch)
|
||||
rowd.update([('train_' + k, v) for k, v in train_metrics.items()])
|
||||
rowd.update([('eval_' + k, v) for k, v in eval_metrics.items()])
|
||||
if lr is not None:
|
||||
rowd['lr'] = lr
|
||||
if log_wandb:
|
||||
wandb.log(rowd)
|
||||
with open(filename, mode='a') as cf:
|
||||
|
103
train.py
103
train.py
@ -36,7 +36,7 @@ from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntrop
|
||||
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, \
|
||||
convert_splitbn_model, convert_sync_batchnorm, model_parameters, set_fast_norm
|
||||
from timm.optim import create_optimizer_v2, optimizer_kwargs
|
||||
from timm.scheduler import create_scheduler
|
||||
from timm.scheduler import create_scheduler_v2, scheduler_kwargs
|
||||
from timm.utils import ApexScaler, NativeScaler
|
||||
|
||||
try:
|
||||
@ -163,10 +163,18 @@ group.add_argument('--layer-decay', type=float, default=None,
|
||||
|
||||
# Learning rate schedule parameters
|
||||
group = parser.add_argument_group('Learning rate schedule parameters')
|
||||
group.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
|
||||
group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER',
|
||||
help='LR scheduler (default: "step"')
|
||||
group.add_argument('--lr', type=float, default=0.05, metavar='LR',
|
||||
help='learning rate (default: 0.05)')
|
||||
group.add_argument('--sched-on-updates', action='store_true', default=False,
|
||||
help='Apply LR scheduler step on update instead of epoch end.')
|
||||
group.add_argument('--lr', type=float, default=None, metavar='LR',
|
||||
help='learning rate, overrides lr-base if set (default: None)')
|
||||
group.add_argument('--lr-base', type=float, default=0.1, metavar='LR',
|
||||
help='base learning rate: lr = lr_base * global_batch_size / base_size')
|
||||
group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV',
|
||||
help='base learning rate batch size (divisor, default: 256).')
|
||||
group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE',
|
||||
help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)')
|
||||
group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
||||
help='learning rate noise on/off epoch percentages')
|
||||
group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
||||
@ -181,23 +189,25 @@ group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
|
||||
help='learning rate cycle limit, cycles enabled if > 1')
|
||||
group.add_argument('--lr-k-decay', type=float, default=1.0,
|
||||
help='learning rate k-decay for cosine/poly (default: 1.0)')
|
||||
group.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
|
||||
help='warmup learning rate (default: 0.0001)')
|
||||
group.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
|
||||
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
|
||||
group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR',
|
||||
help='warmup learning rate (default: 1e-5)')
|
||||
group.add_argument('--min-lr', type=float, default=0, metavar='LR',
|
||||
help='lower lr bound for cyclic schedulers that hit 0 (default: 0)')
|
||||
group.add_argument('--epochs', type=int, default=300, metavar='N',
|
||||
help='number of epochs to train (default: 300)')
|
||||
group.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
|
||||
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
|
||||
group.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
||||
help='manual epoch number (useful on restarts)')
|
||||
group.add_argument('--decay-milestones', default=[30, 60], type=int, nargs='+', metavar="MILESTONES",
|
||||
group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES",
|
||||
help='list of decay epoch indices for multistep lr. must be increasing')
|
||||
group.add_argument('--decay-epochs', type=float, default=100, metavar='N',
|
||||
group.add_argument('--decay-epochs', type=float, default=90, metavar='N',
|
||||
help='epoch interval to decay LR')
|
||||
group.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
|
||||
group.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
|
||||
help='epochs to warmup LR, if scheduler supports')
|
||||
group.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
|
||||
group.add_argument('--warmup-prefix', action='store_true', default=False,
|
||||
help='Exclude warmup period from decay schedule.'),
|
||||
group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N',
|
||||
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
||||
group.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
||||
help='patience epochs for Plateau LR scheduler (default: 10')
|
||||
@ -469,6 +479,20 @@ def main():
|
||||
assert has_functorch, "functorch is needed for --aot-autograd"
|
||||
model = memory_efficient_fusion(model)
|
||||
|
||||
if args.lr is None:
|
||||
global_batch_size = args.batch_size * args.world_size
|
||||
batch_ratio = global_batch_size / args.lr_base_size
|
||||
if not args.lr_base_scale:
|
||||
on = args.opt.lower()
|
||||
args.base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
|
||||
if args.lr_base_scale == 'sqrt':
|
||||
batch_ratio = batch_ratio ** 0.5
|
||||
args.lr = args.lr_base * batch_ratio
|
||||
if utils.is_primary(args):
|
||||
_logger.info(
|
||||
f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) '
|
||||
f'and global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.')
|
||||
|
||||
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
|
||||
|
||||
# setup automatic mixed-precision (AMP) loss scaling and op casting
|
||||
@ -523,20 +547,6 @@ def main():
|
||||
model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb)
|
||||
# NOTE: EMA model does not need to be wrapped by DDP
|
||||
|
||||
# setup learning rate schedule and starting epoch
|
||||
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
|
||||
start_epoch = 0
|
||||
if args.start_epoch is not None:
|
||||
# a specified start_epoch will always override the resume epoch
|
||||
start_epoch = args.start_epoch
|
||||
elif resume_epoch is not None:
|
||||
start_epoch = resume_epoch
|
||||
if lr_scheduler is not None and start_epoch > 0:
|
||||
lr_scheduler.step(start_epoch)
|
||||
|
||||
if utils.is_primary(args):
|
||||
_logger.info('Scheduled epochs: {}'.format(num_epochs))
|
||||
|
||||
# create the train and eval datasets
|
||||
dataset_train = create_dataset(
|
||||
args.dataset,
|
||||
@ -691,6 +701,29 @@ def main():
|
||||
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
|
||||
f.write(args_text)
|
||||
|
||||
# setup learning rate schedule and starting epoch
|
||||
updates_per_epoch = len(loader_train)
|
||||
lr_scheduler, num_epochs = create_scheduler_v2(
|
||||
optimizer,
|
||||
**scheduler_kwargs(args),
|
||||
updates_per_epoch=updates_per_epoch,
|
||||
)
|
||||
start_epoch = 0
|
||||
if args.start_epoch is not None:
|
||||
# a specified start_epoch will always override the resume epoch
|
||||
start_epoch = args.start_epoch
|
||||
elif resume_epoch is not None:
|
||||
start_epoch = resume_epoch
|
||||
if lr_scheduler is not None and start_epoch > 0:
|
||||
if args.step_on_updates:
|
||||
lr_scheduler.step_update(start_epoch * updates_per_epoch)
|
||||
else:
|
||||
lr_scheduler.step(start_epoch)
|
||||
|
||||
if utils.is_primary(args):
|
||||
_logger.info(
|
||||
f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.')
|
||||
|
||||
try:
|
||||
for epoch in range(start_epoch, num_epochs):
|
||||
if hasattr(dataset_train, 'set_epoch'):
|
||||
@ -741,16 +774,14 @@ def main():
|
||||
)
|
||||
eval_metrics = ema_eval_metrics
|
||||
|
||||
if lr_scheduler is not None:
|
||||
# step LR for next epoch
|
||||
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
|
||||
|
||||
if output_dir is not None:
|
||||
lrs = [param_group['lr'] for param_group in optimizer.param_groups]
|
||||
utils.update_summary(
|
||||
epoch,
|
||||
train_metrics,
|
||||
eval_metrics,
|
||||
os.path.join(output_dir, 'summary.csv'),
|
||||
filename=os.path.join(output_dir, 'summary.csv'),
|
||||
lr=sum(lrs) / len(lrs),
|
||||
write_header=best_metric is None,
|
||||
log_wandb=args.log_wandb and has_wandb,
|
||||
)
|
||||
@ -760,8 +791,13 @@ def main():
|
||||
save_metric = eval_metrics[eval_metric]
|
||||
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
|
||||
|
||||
if lr_scheduler is not None:
|
||||
# step LR for next epoch
|
||||
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
if best_metric is not None:
|
||||
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
|
||||
|
||||
@ -796,8 +832,9 @@ def train_one_epoch(
|
||||
model.train()
|
||||
|
||||
end = time.time()
|
||||
last_idx = len(loader) - 1
|
||||
num_updates = epoch * len(loader)
|
||||
num_batches_per_epoch = len(loader)
|
||||
last_idx = num_batches_per_epoch - 1
|
||||
num_updates = epoch * num_batches_per_epoch
|
||||
for batch_idx, (input, target) in enumerate(loader):
|
||||
last_batch = batch_idx == last_idx
|
||||
data_time_m.update(time.time() - end)
|
||||
|
Loading…
x
Reference in New Issue
Block a user