Update tnt.py

This commit is contained in:
Ryan 2025-05-02 20:34:31 +08:00
parent c8c4f256b8
commit b37f0f7a76

View File

@ -5,6 +5,9 @@ A PyTorch implement of TNT as described in
The official mindspore code is released and available at
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT
The official pytorch code is released and available at
https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch
"""
import math
from typing import Optional
@ -12,7 +15,7 @@ from typing import Optional
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple, resample_abs_pos_embed
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint
@ -22,28 +25,6 @@ from ._registry import register_model
__all__ = ['TNT'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'pixel_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'tnt_s_patch16_224': _cfg(
url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'tnt_b_patch16_224': _cfg(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
}
class Attention(nn.Module):
""" Multi-Head Attention
"""
@ -94,6 +75,7 @@ class Block(nn.Module):
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
legacy=False,
):
super().__init__()
# Inner transformer
@ -115,9 +97,14 @@ class Block(nn.Module):
act_layer=act_layer,
drop=proj_drop,
)
self.norm1_proj = norm_layer(dim)
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True)
self.legacy = legacy
if self.legacy:
self.norm1_proj = norm_layer(dim)
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True)
else:
self.norm1_proj = norm_layer(dim * num_pixel)
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=False)
self.norm2_proj = norm_layer(dim_out)
# Outer transformer
self.norm_out = norm_layer(dim_out)
@ -146,9 +133,16 @@ class Block(nn.Module):
pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
# outer
B, N, C = patch_embed.size()
patch_embed = torch.cat(
[patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))],
dim=1)
if self.legacy:
patch_embed = torch.cat([
patch_embed[:, 0:1], patch_embed[:, 1:] + \
self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)),
], dim=1)
else:
patch_embed = torch.cat([
patch_embed[:, 0:1], patch_embed[:, 1:] + \
self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, N - 1, -1)))),
], dim=1)
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
return pixel_embed, patch_embed
@ -157,7 +151,7 @@ class Block(nn.Module):
class PixelEmbed(nn.Module):
""" Image to Pixel Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4, legacy=False):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
@ -165,13 +159,18 @@ class PixelEmbed(nn.Module):
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
num_patches = (self.grid_size[0]) * (self.grid_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.legacy = legacy
self.num_patches = num_patches
self.in_dim = in_dim
new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
self.new_patch_size = new_patch_size
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)
if self.legacy:
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)
else:
self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size)
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
@ -179,9 +178,14 @@ class PixelEmbed(nn.Module):
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
_assert(W == self.img_size[1],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
x = self.proj(x)
x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
if self.legacy:
x = self.proj(x)
x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
else:
x = self.unfold(x)
x = x.transpose(1, 2).reshape(B * self.num_patches, C, self.patch_size[0], self.patch_size[1])
x = self.proj(x)
x = x + pixel_pos
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
return x
@ -211,6 +215,7 @@ class TNT(nn.Module):
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
first_stride=4,
legacy=False,
):
super().__init__()
assert global_pool in ('', 'token', 'avg')
@ -225,6 +230,7 @@ class TNT(nn.Module):
in_chans=in_chans,
in_dim=inner_dim,
stride=first_stride,
legacy=legacy,
)
num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches
@ -255,6 +261,7 @@ class TNT(nn.Module):
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
legacy=legacy,
))
self.blocks = nn.ModuleList(blocks)
self.norm = norm_layer(embed_dim)
@ -338,14 +345,38 @@ class TNT(nn.Module):
def checkpoint_filter_fn(state_dict, model):
state_dict.pop('outer_tokens', None)
out_dict = {}
for k, v in state_dict.items():
k = k.replace('outer_pos', 'patch_pos')
k = k.replace('inner_pos', 'pixel_pos')
k = k.replace('patch_embed', 'pixel_embed')
k = k.replace('proj_norm1', 'norm1_proj')
k = k.replace('proj_norm2', 'norm2_proj')
k = k.replace('inner_norm1', 'norm_in')
k = k.replace('inner_attn', 'attn_in')
k = k.replace('inner_norm2', 'norm_mlp_in')
k = k.replace('inner_mlp', 'mlp_in')
k = k.replace('outer_norm1', 'norm_out')
k = k.replace('outer_attn', 'attn_out')
k = k.replace('outer_norm2', 'norm_mlp')
k = k.replace('outer_mlp', 'mlp')
if k == 'pixel_pos':
B, N, C = v.shape
H = W = int(N ** 0.5)
assert H * W == N
v = v.permute(0, 2, 1).reshape(B, C, H, W)
out_dict[k] = v
""" convert patch embedding weight from manual patchify + linear proj to conv"""
if state_dict['patch_pos'].shape != model.patch_pos.shape:
state_dict['patch_pos'] = resample_abs_pos_embed(
state_dict['patch_pos'],
if out_dict['patch_pos'].shape != model.patch_pos.shape:
out_dict['patch_pos'] = resample_abs_pos_embed(
out_dict['patch_pos'],
new_size=model.pixel_embed.grid_size,
num_prefix_tokens=1,
)
return state_dict
return out_dict
def _create_tnt(variant, pretrained=False, **kwargs):
@ -359,6 +390,30 @@ def _create_tnt(variant, pretrained=False, **kwargs):
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'pixel_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'tnt_s_patch16_224': _cfg(
# hf_hub_id='timm/',
# url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_s_81.5.pth.tar',
),
'tnt_b_patch16_224': _cfg(
# hf_hub_id='timm/',
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_b_82.9.pth.tar',
),
}
@register_model
def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT:
model_cfg = dict(