mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add ConvNeXt 22k->1k fine-tuned and 384 22k-1k fine-tuned weights after testing
This commit is contained in:
parent
6dcbaf211a
commit
b669f4a588
@ -45,6 +45,23 @@ default_cfgs = dict(
|
|||||||
|
|
||||||
convnext_tiny_hnf=_cfg(url=''),
|
convnext_tiny_hnf=_cfg(url=''),
|
||||||
|
|
||||||
|
convnext_base_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth'),
|
||||||
|
convnext_large_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth'),
|
||||||
|
convnext_xlarge_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth'),
|
||||||
|
|
||||||
|
convnext_base_384_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
|
||||||
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
|
||||||
|
convnext_large_384_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
|
||||||
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
|
||||||
|
convnext_xlarge_384_in22ft1k=_cfg(
|
||||||
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
|
||||||
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
|
||||||
|
|
||||||
convnext_base_in22k=_cfg(
|
convnext_base_in22k=_cfg(
|
||||||
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
|
||||||
convnext_large_in22k=_cfg(
|
convnext_large_in22k=_cfg(
|
||||||
@ -339,11 +356,53 @@ def convnext_base(pretrained=False, **kwargs):
|
|||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def convnext_large(pretrained=False, **kwargs):
|
def convnext_large(pretrained=False, **kwargs):
|
||||||
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], conv_mlp=False, **kwargs)
|
||||||
model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
|
model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_base_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
||||||
|
model = _create_convnext('convnext_base_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_large_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], conv_mlp=False, **kwargs)
|
||||||
|
model = _create_convnext('convnext_large_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_xlarge_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], conv_mlp=False, **kwargs)
|
||||||
|
model = _create_convnext('convnext_xlarge_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_base_384_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
||||||
|
model = _create_convnext('convnext_base_384_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_large_384_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], conv_mlp=False, **kwargs)
|
||||||
|
model = _create_convnext('convnext_large_384_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def convnext_xlarge_384_in22ft1k(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], conv_mlp=False, **kwargs)
|
||||||
|
model = _create_convnext('convnext_xlarge_384_in22ft1k', pretrained=pretrained, **model_args)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def convnext_base_in22k(pretrained=False, **kwargs):
|
def convnext_base_in22k(pretrained=False, **kwargs):
|
||||||
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
||||||
@ -353,7 +412,7 @@ def convnext_base_in22k(pretrained=False, **kwargs):
|
|||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def convnext_large_in22k(pretrained=False, **kwargs):
|
def convnext_large_in22k(pretrained=False, **kwargs):
|
||||||
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], conv_mlp=False, **kwargs)
|
||||||
model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
|
model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
@ -291,7 +291,7 @@ def main():
|
|||||||
if args.model == 'all':
|
if args.model == 'all':
|
||||||
# validate all models in a list of names with pretrained checkpoints
|
# validate all models in a list of names with pretrained checkpoints
|
||||||
args.pretrained = True
|
args.pretrained = True
|
||||||
model_names = list_models(pretrained=True, exclude_filters=['*_in21k', '*_in22k'])
|
model_names = list_models(pretrained=True, exclude_filters=['*_in21k', '*_in22k', '*_dino'])
|
||||||
model_cfgs = [(n, '') for n in model_names]
|
model_cfgs = [(n, '') for n in model_names]
|
||||||
elif not is_model(args.model):
|
elif not is_model(args.model):
|
||||||
# model name doesn't exist, try as wildcard filter
|
# model name doesn't exist, try as wildcard filter
|
||||||
|
Loading…
x
Reference in New Issue
Block a user