diff --git a/tests/test_models.py b/tests/test_models.py
index d8ac8d64..e75b17f9 100644
--- a/tests/test_models.py
+++ b/tests/test_models.py
@@ -41,7 +41,7 @@ NON_STD_FILTERS = [
     'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
     'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit*',
     'poolformer_*', 'volo_*', 'sequencer2d_*', 'pvt_v2*', 'mvitv2*', 'gcvit*', 'efficientformer*',
-    'eva_*', 'flexivit*', 'eva02*', 'samvit_*'
+    'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*'
 ]
 NUM_NON_STD = len(NON_STD_FILTERS)
 
diff --git a/timm/models/__init__.py b/timm/models/__init__.py
index f308a580..56ff246c 100644
--- a/timm/models/__init__.py
+++ b/timm/models/__init__.py
@@ -17,6 +17,8 @@ from .edgenext import *
 from .efficientformer import *
 from .efficientformer_v2 import *
 from .efficientnet import *
+from .efficientvit_mit import *
+from .efficientvit_msra import *
 from .eva import *
 from .focalnet import *
 from .gcvit import *
diff --git a/timm/models/efficientvit_mit.py b/timm/models/efficientvit_mit.py
new file mode 100644
index 00000000..6d123cd4
--- /dev/null
+++ b/timm/models/efficientvit_mit.py
@@ -0,0 +1,677 @@
+""" EfficientViT (by MIT Song Han's Lab)
+
+Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition`
+    - https://arxiv.org/abs/2205.14756
+
+Adapted from official impl at https://github.com/mit-han-lab/efficientvit
+"""
+
+__all__ = ['EfficientVit']
+from typing import Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
+from ._registry import register_model, generate_default_cfgs
+from ._builder import build_model_with_cfg
+from ._manipulate import checkpoint_seq
+from timm.layers import SelectAdaptivePool2d, create_conv2d
+
+
+def val2list(x: list or tuple or any, repeat_time=1):
+    if isinstance(x, (list, tuple)):
+        return list(x)
+    return [x for _ in range(repeat_time)]
+
+
+def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1):
+    # repeat elements if necessary
+    x = val2list(x)
+    if len(x) > 0:
+        x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
+
+    return tuple(x)
+
+
+def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]:
+    if isinstance(kernel_size, tuple):
+        return tuple([get_same_padding(ks) for ks in kernel_size])
+    else:
+        assert kernel_size % 2 > 0, "kernel size should be odd number"
+        return kernel_size // 2
+
+
+class ConvNormAct(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        kernel_size=3,
+        stride=1,
+        dilation=1,
+        groups=1,
+        bias=False,
+        dropout=0.,
+        norm_layer=nn.BatchNorm2d,
+        act_layer=nn.ReLU,
+    ):
+        super(ConvNormAct, self).__init__()
+        self.dropout = nn.Dropout(dropout, inplace=False)
+        self.conv = create_conv2d(
+            in_channels,
+            out_channels,
+            kernel_size=kernel_size,
+            stride=stride,
+            dilation=dilation,
+            groups=groups,
+            bias=bias,
+        )
+        self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity()
+        self.act = act_layer(inplace=True) if act_layer else nn.Identity()
+
+    def forward(self, x):
+        x = self.dropout(x)
+        x = self.conv(x)
+        x = self.norm(x)
+        x = self.act(x)
+        return x
+
+
+class DSConv(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        kernel_size=3,
+        stride=1,
+        use_bias=False,
+        norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d),
+        act_layer=(nn.ReLU6, None),
+    ):
+        super(DSConv, self).__init__()
+        use_bias = val2tuple(use_bias, 2)
+        norm_layer = val2tuple(norm_layer, 2)
+        act_layer = val2tuple(act_layer, 2)
+
+        self.depth_conv = ConvNormAct(
+            in_channels,
+            in_channels,
+            kernel_size,
+            stride,
+            groups=in_channels,
+            norm_layer=norm_layer[0],
+            act_layer=act_layer[0],
+            bias=use_bias[0],
+        )
+        self.point_conv = ConvNormAct(
+            in_channels,
+            out_channels,
+            1,
+            norm_layer=norm_layer[1],
+            act_layer=act_layer[1],
+            bias=use_bias[1],
+        )
+
+    def forward(self, x):
+        x = self.depth_conv(x)
+        x = self.point_conv(x)
+        return x
+
+
+class MBConv(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        kernel_size=3,
+        stride=1,
+        mid_channels=None,
+        expand_ratio=6,
+        use_bias=False,
+        norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d),
+        act_layer=(nn.ReLU6, nn.ReLU6, None),
+    ):
+        super(MBConv, self).__init__()
+        use_bias = val2tuple(use_bias, 3)
+        norm_layer = val2tuple(norm_layer, 3)
+        act_layer = val2tuple(act_layer, 3)
+        mid_channels = mid_channels or round(in_channels * expand_ratio)
+
+        self.inverted_conv = ConvNormAct(
+            in_channels,
+            mid_channels,
+            1,
+            stride=1,
+            norm_layer=norm_layer[0],
+            act_layer=act_layer[0],
+            bias=use_bias[0],
+        )
+        self.depth_conv = ConvNormAct(
+            mid_channels,
+            mid_channels,
+            kernel_size,
+            stride=stride,
+            groups=mid_channels,
+            norm_layer=norm_layer[1],
+            act_layer=act_layer[1],
+            bias=use_bias[1],
+        )
+        self.point_conv = ConvNormAct(
+            mid_channels,
+            out_channels,
+            1,
+            norm_layer=norm_layer[2],
+            act_layer=act_layer[2],
+            bias=use_bias[2],
+        )
+
+    def forward(self, x):
+        x = self.inverted_conv(x)
+        x = self.depth_conv(x)
+        x = self.point_conv(x)
+        return x
+
+
+class LiteMSA(nn.Module):
+    """Lightweight multi-scale attention"""
+
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        heads: int or None = None,
+        heads_ratio: float = 1.0,
+        dim=8,
+        use_bias=False,
+        norm_layer=(None, nn.BatchNorm2d),
+        act_layer=(None, None),
+        kernel_func=nn.ReLU,
+        scales=(5,),
+        eps=1e-5,
+    ):
+        super(LiteMSA, self).__init__()
+        self.eps = eps
+        heads = heads or int(in_channels // dim * heads_ratio)
+        total_dim = heads * dim
+        use_bias = val2tuple(use_bias, 2)
+        norm_layer = val2tuple(norm_layer, 2)
+        act_layer = val2tuple(act_layer, 2)
+
+        self.dim = dim
+        self.qkv = ConvNormAct(
+            in_channels,
+            3 * total_dim,
+            1,
+            bias=use_bias[0],
+            norm_layer=norm_layer[0],
+            act_layer=act_layer[0],
+        )
+        self.aggreg = nn.ModuleList([
+            nn.Sequential(
+                nn.Conv2d(
+                    3 * total_dim,
+                    3 * total_dim,
+                    scale,
+                    padding=get_same_padding(scale),
+                    groups=3 * total_dim,
+                    bias=use_bias[0],
+                ),
+                nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]),
+            )
+            for scale in scales
+        ])
+        self.kernel_func = kernel_func(inplace=False)
+
+        self.proj = ConvNormAct(
+            total_dim * (1 + len(scales)),
+            out_channels,
+            1,
+            bias=use_bias[1],
+            norm_layer=norm_layer[1],
+            act_layer=act_layer[1],
+        )
+
+    def forward(self, x):
+        B, _, H, W = x.shape
+
+        # generate multi-scale q, k, v
+        qkv = self.qkv(x)
+        multi_scale_qkv = [qkv]
+        for op in self.aggreg:
+            multi_scale_qkv.append(op(qkv))
+        multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1)
+        multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2)
+        q, k, v = multi_scale_qkv.tensor_split(3, dim=-1)
+
+        # lightweight global attention
+        q = self.kernel_func(q)
+        k = self.kernel_func(k)
+        v = F.pad(v, (0, 1), mode="constant", value=1.)
+
+        kv = k.transpose(-1, -2) @ v
+        out = q @ kv
+        out = out[..., :-1] / (out[..., -1:] + self.eps)
+
+        # final projection
+        out = out.transpose(-1, -2).reshape(B, -1, H, W)
+        out = self.proj(out)
+        return out
+
+
+class EfficientVitBlock(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        heads_ratio=1.0,
+        head_dim=32,
+        expand_ratio=4,
+        norm_layer=nn.BatchNorm2d,
+        act_layer=nn.Hardswish,
+    ):
+        super(EfficientVitBlock, self).__init__()
+        self.context_module = ResidualBlock(
+            LiteMSA(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                heads_ratio=heads_ratio,
+                dim=head_dim,
+                norm_layer=(None, norm_layer),
+            ),
+            nn.Identity(),
+        )
+        self.local_module = ResidualBlock(
+            MBConv(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                expand_ratio=expand_ratio,
+                use_bias=(True, True, False),
+                norm_layer=(None, None, norm_layer),
+                act_layer=(act_layer, act_layer, None),
+            ),
+            nn.Identity(),
+        )
+
+    def forward(self, x):
+        x = self.context_module(x)
+        x = self.local_module(x)
+        return x
+
+
+class ResidualBlock(nn.Module):
+    def __init__(
+        self,
+        main: Optional[nn.Module],
+        shortcut: Optional[nn.Module] = None,
+        pre_norm: Optional[nn.Module] = None,
+    ):
+        super(ResidualBlock, self).__init__()
+        self.pre_norm = pre_norm if pre_norm is not None else nn.Identity()
+        self.main = main
+        self.shortcut = shortcut
+
+    def forward(self, x):
+        res = self.main(self.pre_norm(x))
+        if self.shortcut is not None:
+            res = res + self.shortcut(x)
+        return res
+
+
+def build_local_block(        
+        in_channels: int,
+        out_channels: int,
+        stride: int,
+        expand_ratio: float,
+        norm_layer: str,
+        act_layer: str,
+        fewer_norm: bool = False,
+):
+    if expand_ratio == 1:
+        block = DSConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            stride=stride,
+            use_bias=(True, False) if fewer_norm else False,
+            norm_layer=(None, norm_layer) if fewer_norm else norm_layer,
+            act_layer=(act_layer, None),
+        )
+    else:
+        block = MBConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            stride=stride,
+            expand_ratio=expand_ratio,
+            use_bias=(True, True, False) if fewer_norm else False,
+            norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer,
+            act_layer=(act_layer, act_layer, None),
+        )
+    return block
+
+
+class Stem(nn.Sequential):
+    def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer):
+        super().__init__()
+        self.stride = 2
+
+        self.add_module(
+            'in_conv',
+            ConvNormAct(
+                in_chs, out_chs,
+                kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer,
+            )
+        )
+        stem_block = 0
+        for _ in range(depth):
+            self.add_module(f'res{stem_block}', ResidualBlock(
+                build_local_block(
+                    in_channels=out_chs,
+                    out_channels=out_chs,
+                    stride=1,
+                    expand_ratio=1,
+                    norm_layer=norm_layer,
+                    act_layer=act_layer,
+                ),
+                nn.Identity(),
+            ))
+            stem_block += 1
+
+
+class EfficientVitStage(nn.Module):
+    def __init__(
+            self,
+            in_chs,
+            out_chs,
+            depth,
+            norm_layer,
+            act_layer,
+            expand_ratio,
+            head_dim,
+            vit_stage=False,
+    ):
+        super(EfficientVitStage, self).__init__()
+        blocks = [ResidualBlock(
+            build_local_block(
+                in_channels=in_chs,
+                out_channels=out_chs,
+                stride=2,
+                expand_ratio=expand_ratio,
+                norm_layer=norm_layer,
+                act_layer=act_layer,
+                fewer_norm=vit_stage,
+            ),
+            None,
+        )]
+        in_chs = out_chs
+
+        if vit_stage:
+            # for stage 3, 4
+            for _ in range(depth):
+                blocks.append(
+                    EfficientVitBlock(
+                        in_channels=in_chs,
+                        head_dim=head_dim,
+                        expand_ratio=expand_ratio,
+                        norm_layer=norm_layer,
+                        act_layer=act_layer,
+                    )
+                )
+        else:
+            # for stage 1, 2
+            for i in range(1, depth):
+                blocks.append(ResidualBlock(
+                    build_local_block(
+                        in_channels=in_chs,
+                        out_channels=out_chs,
+                        stride=1,
+                        expand_ratio=expand_ratio,
+                        norm_layer=norm_layer,
+                        act_layer=act_layer
+                    ),
+                    nn.Identity(),
+                ))
+
+        self.blocks = nn.Sequential(*blocks)
+
+    def forward(self, x):
+        return self.blocks(x)
+
+
+class ClassifierHead(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        widths,
+        n_classes=1000,
+        dropout=0.,
+        norm_layer=nn.BatchNorm2d,
+        act_layer=nn.Hardswish,
+        global_pool='avg',
+    ):
+        super(ClassifierHead, self).__init__()
+        self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer)
+        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True, input_fmt='NCHW')
+        self.classifier = nn.Sequential(
+            nn.Linear(widths[0], widths[1], bias=False),
+            nn.LayerNorm(widths[1]),
+            act_layer(inplace=True),
+            nn.Dropout(dropout, inplace=False),
+            nn.Linear(widths[1], n_classes, bias=True),
+        )
+
+    def forward(self, x, pre_logits: bool = False):
+        x = self.in_conv(x)
+        x = self.global_pool(x)
+        if pre_logits:
+            return x
+        x = self.classifier(x)
+        return x
+
+
+class EfficientVit(nn.Module):
+    def __init__(
+        self,
+        in_chans=3,
+        widths=(),
+        depths=(),
+        head_dim=32,
+        expand_ratio=4,
+        norm_layer=nn.BatchNorm2d,
+        act_layer=nn.Hardswish,
+        global_pool='avg',
+        head_widths=(),
+        drop_rate=0.0,
+        num_classes=1000,
+    ):
+        super(EfficientVit, self).__init__()
+        self.grad_checkpointing = False
+        self.global_pool = global_pool
+        self.num_classes = num_classes
+
+        # input stem
+        self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer)
+        stride = self.stem.stride
+
+        # stages
+        self.feature_info = []
+        stages = []
+        stage_idx = 0
+        in_channels = widths[0]
+        for i, (w, d) in enumerate(zip(widths[1:], depths[1:])):
+            stages.append(EfficientVitStage(
+                in_channels,
+                w,
+                depth=d,
+                norm_layer=norm_layer,
+                act_layer=act_layer,
+                expand_ratio=expand_ratio,
+                head_dim=head_dim,
+                vit_stage=i >= 2,
+            ))
+            stride *= 2
+            in_channels = w
+            self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{stage_idx}')]
+            stage_idx += 1
+
+        self.stages = nn.Sequential(*stages)
+        self.num_features = in_channels
+        self.head_widths = head_widths
+        self.head_dropout = drop_rate
+        if num_classes > 0:
+            self.head = ClassifierHead(
+                self.num_features,
+                self.head_widths,
+                n_classes=num_classes,
+                dropout=self.head_dropout,
+                global_pool=self.global_pool,
+            )
+        else:
+            if self.global_pool == 'avg':
+                self.head = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
+            else:
+                self.head = nn.Identity()
+
+    @torch.jit.ignore
+    def group_matcher(self, coarse=False):
+        matcher = dict(
+            stem=r'^stem',  # stem and embed
+            blocks=[(r'^stages\.(\d+)', None)]
+        )
+        return matcher
+
+    @torch.jit.ignore
+    def set_grad_checkpointing(self, enable=True):
+        self.grad_checkpointing = enable
+
+    @torch.jit.ignore
+    def get_classifier(self):
+        return self.head.classifier[-1]
+
+    def reset_classifier(self, num_classes, global_pool=None):
+        self.num_classes = num_classes
+        if global_pool is not None:
+            self.global_pool = global_pool
+        if num_classes > 0:
+            self.head = ClassifierHead(
+                self.num_features,
+                self.head_widths,
+                n_classes=num_classes,
+                dropout=self.head_dropout,
+                global_pool=self.global_pool,
+            )
+        else:
+            if self.global_pool == 'avg':
+                self.head = SelectAdaptivePool2d(pool_type=self.global_pool, flatten=True)
+            else:
+                self.head = nn.Identity()
+
+    def forward_features(self, x):
+        x = self.stem(x)
+        if self.grad_checkpointing and not torch.jit.is_scripting():
+            x = checkpoint_seq(self.stages, x)
+        else:
+            x = self.stages(x)
+        return x
+
+    def forward_head(self, x, pre_logits: bool = False):
+        return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
+
+    def forward(self, x):
+        x = self.forward_features(x)
+        x = self.forward_head(x)
+        return x
+
+
+def _cfg(url='', **kwargs):
+    return {
+        'url': url,
+        'num_classes': 1000,
+        'mean': IMAGENET_DEFAULT_MEAN,
+        'std': IMAGENET_DEFAULT_STD,
+        'first_conv': 'stem.in_conv.conv',
+        'classifier': 'head.classifier.4',
+        'crop_pct': 0.95,
+        'input_size': (3, 224, 224),
+        'pool_size': (7, 7),
+        **kwargs,
+    }
+
+
+default_cfgs = generate_default_cfgs({
+    'efficientvit_b0.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+    ),
+    'efficientvit_b1.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+    ),
+    'efficientvit_b1.r256_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0,
+    ),
+    'efficientvit_b1.r288_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0,
+    ),
+    'efficientvit_b2.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+    ),
+    'efficientvit_b2.r256_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0,
+    ),
+    'efficientvit_b2.r288_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0,
+    ),
+    'efficientvit_b3.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+    ),
+    'efficientvit_b3.r256_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0,
+    ),
+    'efficientvit_b3.r288_in1k': _cfg(
+        hf_hub_id='timm/',
+        input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0,
+    ),
+})
+
+
+def _create_efficientvit(variant, pretrained=False, **kwargs):
+    out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
+    model = build_model_with_cfg(
+        EfficientVit,
+        variant,
+        pretrained,
+        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
+        **kwargs
+    )
+    return model
+
+
+@register_model
+def efficientvit_b0(pretrained=False, **kwargs):
+    model_args = dict(
+        widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280))
+    return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_b1(pretrained=False, **kwargs):
+    model_args = dict(
+        widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600))
+    return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_b2(pretrained=False, **kwargs):
+    model_args = dict(
+        widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560))
+    return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_b3(pretrained=False, **kwargs):
+    model_args = dict(
+        widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560))
+    return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs))
diff --git a/timm/models/efficientvit_msra.py b/timm/models/efficientvit_msra.py
new file mode 100644
index 00000000..8940df0f
--- /dev/null
+++ b/timm/models/efficientvit_msra.py
@@ -0,0 +1,652 @@
+""" EfficientViT (by MSRA)
+
+Paper: `EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention`
+    - https://arxiv.org/abs/2305.07027
+
+Adapted from official impl at https://github.com/microsoft/Cream/tree/main/EfficientViT
+"""
+
+__all__ = ['EfficientVitMsra']
+import itertools
+from collections import OrderedDict
+from typing import Dict
+
+import torch
+import torch.nn as nn
+
+from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
+from timm.models.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert
+from ._builder import build_model_with_cfg
+from ._manipulate import checkpoint_seq
+from ._registry import register_model, generate_default_cfgs
+
+
+class ConvNorm(torch.nn.Sequential):
+    def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
+        super().__init__()
+        self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False)
+        self.bn = nn.BatchNorm2d(out_chs)
+        torch.nn.init.constant_(self.bn.weight, bn_weight_init)
+        torch.nn.init.constant_(self.bn.bias, 0)
+
+    @torch.no_grad()
+    def fuse(self):
+        c, bn = self.conv, self.bn
+        w = bn.weight / (bn.running_var + bn.eps)**0.5
+        w = c.weight * w[:, None, None, None]
+        b = bn.bias - bn.running_mean * bn.weight / \
+            (bn.running_var + bn.eps)**0.5
+        m = torch.nn.Conv2d(
+            w.size(1) * self.c.groups, w.size(0), w.shape[2:],
+            stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
+        m.weight.data.copy_(w)
+        m.bias.data.copy_(b)
+        return m
+
+
+class NormLinear(torch.nn.Sequential):
+    def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.):
+        super().__init__()
+        self.bn = nn.BatchNorm1d(in_features)
+        self.drop = nn.Dropout(drop)
+        self.linear = nn.Linear(in_features, out_features, bias=bias)
+
+        trunc_normal_(self.linear.weight, std=std)
+        if self.linear.bias is not None:
+            nn.init.constant_(self.linear.bias, 0)
+
+    @torch.no_grad()
+    def fuse(self):
+        bn, linear = self.bn, self.linear
+        w = bn.weight / (bn.running_var + bn.eps)**0.5
+        b = bn.bias - self.bn.running_mean * \
+            self.bn.weight / (bn.running_var + bn.eps)**0.5
+        w = linear.weight * w[None, :]
+        if linear.bias is None:
+            b = b @ self.linear.weight.T
+        else:
+            b = (linear.weight @ b[:, None]).view(-1) + self.linear.bias
+        m = torch.nn.Linear(w.size(1), w.size(0))
+        m.weight.data.copy_(w)
+        m.bias.data.copy_(b)
+        return m
+
+
+class PatchMerging(torch.nn.Module):
+    def __init__(self, dim, out_dim):
+        super().__init__()
+        hid_dim = int(dim * 4)
+        self.conv1 = ConvNorm(dim, hid_dim, 1, 1, 0)
+        self.act = torch.nn.ReLU()
+        self.conv2 = ConvNorm(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim)
+        self.se = SqueezeExcite(hid_dim, .25)
+        self.conv3 = ConvNorm(hid_dim, out_dim, 1, 1, 0)
+
+    def forward(self, x):
+        x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x))))))
+        return x
+
+
+class ResidualDrop(torch.nn.Module):
+    def __init__(self, m, drop=0.):
+        super().__init__()
+        self.m = m
+        self.drop = drop
+
+    def forward(self, x):
+        if self.training and self.drop > 0:
+            return x + self.m(x) * torch.rand(
+                x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach()
+        else:
+            return x + self.m(x)
+
+
+class ConvMlp(torch.nn.Module):
+    def __init__(self, ed, h):
+        super().__init__()
+        self.pw1 = ConvNorm(ed, h)
+        self.act = torch.nn.ReLU()
+        self.pw2 = ConvNorm(h, ed, bn_weight_init=0)
+
+    def forward(self, x):
+        x = self.pw2(self.act(self.pw1(x)))
+        return x
+
+
+class CascadedGroupAttention(torch.nn.Module):
+    attention_bias_cache: Dict[str, torch.Tensor]
+
+    r""" Cascaded Group Attention.
+
+    Args:
+        dim (int): Number of input channels.
+        key_dim (int): The dimension for query and key.
+        num_heads (int): Number of attention heads.
+        attn_ratio (int): Multiplier for the query dim for value dimension.
+        resolution (int): Input resolution, correspond to the window size.
+        kernels (List[int]): The kernel size of the dw conv on query.
+    """
+    def __init__(
+            self,
+            dim,
+            key_dim,
+            num_heads=8,
+            attn_ratio=4,
+            resolution=14,
+            kernels=(5, 5, 5, 5),
+    ):
+        super().__init__()
+        self.num_heads = num_heads
+        self.scale = key_dim ** -0.5
+        self.key_dim = key_dim
+        self.val_dim = int(attn_ratio * key_dim)
+        self.attn_ratio = attn_ratio
+
+        qkvs = []
+        dws = []
+        for i in range(num_heads):
+            qkvs.append(ConvNorm(dim // (num_heads), self.key_dim * 2 + self.val_dim))
+            dws.append(ConvNorm(self.key_dim, self.key_dim, kernels[i], 1, kernels[i] // 2, groups=self.key_dim))
+        self.qkvs = torch.nn.ModuleList(qkvs)
+        self.dws = torch.nn.ModuleList(dws)
+        self.proj = torch.nn.Sequential(
+            torch.nn.ReLU(),
+            ConvNorm(self.val_dim * num_heads, dim, bn_weight_init=0)
+        )
+
+        points = list(itertools.product(range(resolution), range(resolution)))
+        N = len(points)
+        attention_offsets = {}
+        idxs = []
+        for p1 in points:
+            for p2 in points:
+                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
+                if offset not in attention_offsets:
+                    attention_offsets[offset] = len(attention_offsets)
+                idxs.append(attention_offsets[offset])
+        self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
+        self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False)
+        self.attention_bias_cache = {}
+
+    @torch.no_grad()
+    def train(self, mode=True):
+        super().train(mode)
+        if mode and self.attention_bias_cache:
+            self.attention_bias_cache = {}  # clear ab cache
+
+    def get_attention_biases(self, device: torch.device) -> torch.Tensor:
+        if torch.jit.is_tracing() or self.training:
+            return self.attention_biases[:, self.attention_bias_idxs]
+        else:
+            device_key = str(device)
+            if device_key not in self.attention_bias_cache:
+                self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
+            return self.attention_bias_cache[device_key]
+
+    def forward(self, x):
+        B, C, H, W = x.shape
+        feats_in = x.chunk(len(self.qkvs), dim=1)
+        feats_out = []
+        feat = feats_in[0]
+        attn_bias = self.get_attention_biases(x.device)
+        for head_idx, (qkv, dws) in enumerate(zip(self.qkvs, self.dws)):
+            if head_idx > 0:
+                feat = feat + feats_in[head_idx]
+            feat = qkv(feat)
+            q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.val_dim], dim=1)
+            q = dws(q)
+            q, k, v = q.flatten(2), k.flatten(2), v.flatten(2)
+            q = q * self.scale
+            attn = q.transpose(-2, -1) @ k
+            attn = attn + attn_bias[head_idx]
+            attn = attn.softmax(dim=-1)
+            feat = v @ attn.transpose(-2, -1)
+            feat = feat.view(B, self.val_dim, H, W)
+            feats_out.append(feat)
+        x = self.proj(torch.cat(feats_out, 1))
+        return x
+
+
+class LocalWindowAttention(torch.nn.Module):
+    r""" Local Window Attention.
+
+    Args:
+        dim (int): Number of input channels.
+        key_dim (int): The dimension for query and key.
+        num_heads (int): Number of attention heads.
+        attn_ratio (int): Multiplier for the query dim for value dimension.
+        resolution (int): Input resolution.
+        window_resolution (int): Local window resolution.
+        kernels (List[int]): The kernel size of the dw conv on query.
+    """
+    def __init__(
+            self,
+            dim,
+            key_dim,
+            num_heads=8,
+            attn_ratio=4,
+            resolution=14,
+            window_resolution=7,
+            kernels=(5, 5, 5, 5),
+    ):
+        super().__init__()
+        self.dim = dim
+        self.num_heads = num_heads
+        self.resolution = resolution
+        assert window_resolution > 0, 'window_size must be greater than 0'
+        self.window_resolution = window_resolution
+        window_resolution = min(window_resolution, resolution)
+        self.attn = CascadedGroupAttention(
+            dim, key_dim, num_heads,
+            attn_ratio=attn_ratio,
+            resolution=window_resolution,
+            kernels=kernels,
+        )
+
+    def forward(self, x):
+        H = W = self.resolution
+        B, C, H_, W_ = x.shape
+        # Only check this for classifcation models
+        _assert(H == H_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}')
+        _assert(W == W_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}')
+        if H <= self.window_resolution and W <= self.window_resolution:
+            x = self.attn(x)
+        else:
+            x = x.permute(0, 2, 3, 1)
+            pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution
+            pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution
+            x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b))
+
+            pH, pW = H + pad_b, W + pad_r
+            nH = pH // self.window_resolution
+            nW = pW // self.window_resolution
+            # window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw
+            x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3)
+            x = x.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2)
+            x = self.attn(x)
+            # window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC
+            x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C)
+            x = x.transpose(2, 3).reshape(B, pH, pW, C)
+            x = x[:, :H, :W].contiguous()
+            x = x.permute(0, 3, 1, 2)
+        return x
+
+
+class EfficientVitBlock(torch.nn.Module):
+    """ A basic EfficientVit building block.
+
+    Args:
+        dim (int): Number of input channels.
+        key_dim (int): Dimension for query and key in the token mixer.
+        num_heads (int): Number of attention heads.
+        attn_ratio (int): Multiplier for the query dim for value dimension.
+        resolution (int): Input resolution.
+        window_resolution (int): Local window resolution.
+        kernels (List[int]): The kernel size of the dw conv on query.
+    """
+    def __init__(
+            self,
+            dim,
+            key_dim,
+            num_heads=8,
+            attn_ratio=4,
+            resolution=14,
+            window_resolution=7,
+            kernels=[5, 5, 5, 5],
+    ):
+        super().__init__()
+
+        self.dw0 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.))
+        self.ffn0 = ResidualDrop(ConvMlp(dim, int(dim * 2)))
+
+        self.mixer = ResidualDrop(
+            LocalWindowAttention(
+                dim, key_dim, num_heads,
+                attn_ratio=attn_ratio,
+                resolution=resolution,
+                window_resolution=window_resolution,
+                kernels=kernels,
+            )
+        )
+
+        self.dw1 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.))
+        self.ffn1 = ResidualDrop(ConvMlp(dim, int(dim * 2)))
+
+    def forward(self, x):
+        return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x)))))
+
+
+class EfficientVitStage(torch.nn.Module):
+    def __init__(
+            self,
+            in_dim,
+            out_dim,
+            key_dim,
+            downsample=('', 1),
+            num_heads=8,
+            attn_ratio=4,
+            resolution=14,
+            window_resolution=7,
+            kernels=[5, 5, 5, 5],
+            depth=1,
+    ):
+        super().__init__()
+        if downsample[0] == 'subsample':
+            self.resolution = (resolution - 1) // downsample[1] + 1
+            down_blocks = []
+            down_blocks.append((
+                'res1',
+                torch.nn.Sequential(
+                    ResidualDrop(ConvNorm(in_dim, in_dim, 3, 1, 1, groups=in_dim)),
+                    ResidualDrop(ConvMlp(in_dim, int(in_dim * 2))),
+                )
+            ))
+            down_blocks.append(('patchmerge', PatchMerging(in_dim, out_dim)))
+            down_blocks.append((
+                'res2',
+                torch.nn.Sequential(
+                    ResidualDrop(ConvNorm(out_dim, out_dim, 3, 1, 1, groups=out_dim)),
+                    ResidualDrop(ConvMlp(out_dim, int(out_dim * 2))),
+                )
+            ))
+            self.downsample = nn.Sequential(OrderedDict(down_blocks))
+        else:
+            assert in_dim == out_dim
+            self.downsample = nn.Identity()
+            self.resolution = resolution
+
+        blocks = []
+        for d in range(depth):
+            blocks.append(EfficientVitBlock(out_dim, key_dim, num_heads, attn_ratio, self.resolution, window_resolution, kernels))
+        self.blocks = nn.Sequential(*blocks)
+
+    def forward(self, x):
+        x = self.downsample(x)
+        x = self.blocks(x)
+        return x
+
+
+class PatchEmbedding(torch.nn.Sequential):
+    def __init__(self, in_chans, dim):
+        super().__init__()
+        self.add_module('conv1', ConvNorm(in_chans, dim // 8, 3, 2, 1))
+        self.add_module('relu1', torch.nn.ReLU())
+        self.add_module('conv2', ConvNorm(dim // 8, dim // 4, 3, 2, 1))
+        self.add_module('relu2', torch.nn.ReLU())
+        self.add_module('conv3', ConvNorm(dim // 4, dim // 2, 3, 2, 1))
+        self.add_module('relu3', torch.nn.ReLU())
+        self.add_module('conv4', ConvNorm(dim // 2, dim, 3, 2, 1))
+        self.patch_size = 16
+
+
+class EfficientVitMsra(nn.Module):
+    def __init__(
+            self,
+            img_size=224,
+            in_chans=3,
+            num_classes=1000,
+            embed_dim=(64, 128, 192),
+            key_dim=(16, 16, 16),
+            depth=(1, 2, 3),
+            num_heads=(4, 4, 4),
+            window_size=(7, 7, 7),
+            kernels=(5, 5, 5, 5),
+            down_ops=(('', 1), ('subsample', 2), ('subsample', 2)),
+            global_pool='avg',
+            drop_rate=0.,
+    ):
+        super(EfficientVitMsra, self).__init__()
+        self.grad_checkpointing = False
+        self.num_classes = num_classes
+        self.drop_rate = drop_rate
+
+        # Patch embedding
+        self.patch_embed = PatchEmbedding(in_chans, embed_dim[0])
+        stride = self.patch_embed.patch_size
+        resolution = img_size // self.patch_embed.patch_size
+        attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))]
+
+        # Build EfficientVit blocks
+        self.feature_info = []
+        stages = []
+        pre_ed = embed_dim[0]
+        for i, (ed, kd, dpth, nh, ar, wd, do) in enumerate(
+                zip(embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)):
+            stage = EfficientVitStage(
+                in_dim=pre_ed,
+                out_dim=ed,
+                key_dim=kd,
+                downsample=do,
+                num_heads=nh,
+                attn_ratio=ar,
+                resolution=resolution,
+                window_resolution=wd,
+                kernels=kernels,
+                depth=dpth,
+            )
+            pre_ed = ed
+            if do[0] == 'subsample' and i != 0:
+                stride *= do[1]
+            resolution = stage.resolution
+            stages.append(stage)
+            self.feature_info += [dict(num_chs=ed, reduction=stride, module=f'stages.{i}')]
+        self.stages = nn.Sequential(*stages)
+
+        if global_pool == 'avg':
+            self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
+        else:
+            assert num_classes == 0
+            self.global_pool = nn.Identity()
+        self.num_features = embed_dim[-1]
+        self.head = NormLinear(
+            self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity()
+
+    @torch.jit.ignore
+    def group_matcher(self, coarse=False):
+        matcher = dict(
+            stem=r'^patch_embed',
+            blocks=[(r'^stages\.(\d+)', None)]
+        )
+        return matcher
+
+    @torch.jit.ignore
+    def set_grad_checkpointing(self, enable=True):
+        self.grad_checkpointing = enable
+
+    @torch.jit.ignore
+    def get_classifier(self):
+        return self.head
+
+    def reset_classifier(self, num_classes, global_pool=None):
+        self.num_classes = num_classes
+        if global_pool is not None:
+            if global_pool == 'avg':
+                self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
+            else:
+                assert num_classes == 0
+                self.global_pool = nn.Identity()
+        self.head = NormLinear(
+            self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity()
+
+    def forward_features(self, x):
+        x = self.patch_embed(x)
+        if self.grad_checkpointing and not torch.jit.is_scripting():
+            x = checkpoint_seq(self.stages, x)
+        else:
+            x = self.stages(x)
+        return x
+
+    def forward_head(self, x, pre_logits: bool = False):
+        x = self.global_pool(x)
+        return x if pre_logits else self.head(x)
+
+    def forward(self, x):
+        x = self.forward_features(x)
+        x = self.forward_head(x)
+        return x
+
+
+# def checkpoint_filter_fn(state_dict, model):
+#     if 'model' in state_dict.keys():
+#         state_dict = state_dict['model']
+#     tmp_dict = {}
+#     out_dict = {}
+#     target_keys = model.state_dict().keys()
+#     target_keys = [k for k in target_keys if k.startswith('stages.')]
+#
+#     for k, v in state_dict.items():
+#         if 'attention_bias_idxs' in k:
+#             continue
+#         k = k.split('.')
+#         if k[-2] == 'c':
+#             k[-2] = 'conv'
+#         if k[-2] == 'l':
+#             k[-2] = 'linear'
+#         k = '.'.join(k)
+#         tmp_dict[k] = v
+#
+#     for k, v in tmp_dict.items():
+#         if k.startswith('patch_embed'):
+#             k = k.split('.')
+#             k[1] = 'conv' + str(int(k[1]) // 2 + 1)
+#             k = '.'.join(k)
+#         elif k.startswith('blocks'):
+#             kw = '.'.join(k.split('.')[2:])
+#             find_kw = [a for a in list(sorted(tmp_dict.keys())) if kw in a]
+#             idx = find_kw.index(k)
+#             k = [a for a in target_keys if kw in a][idx]
+#         out_dict[k] = v
+#
+#     return out_dict
+
+
+def _cfg(url='', **kwargs):
+    return {
+        'url': url,
+        'num_classes': 1000,
+        'mean': IMAGENET_DEFAULT_MEAN,
+        'std': IMAGENET_DEFAULT_STD,
+        'first_conv': 'patch_embed.conv1.conv',
+        'classifier': 'head.linear',
+        'fixed_input_size': True,
+        'pool_size': (4, 4),
+        **kwargs,
+    }
+
+
+default_cfgs = generate_default_cfgs({
+    'efficientvit_m0.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m0.pth'
+    ),
+    'efficientvit_m1.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m1.pth'
+    ),
+    'efficientvit_m2.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m2.pth'
+    ),
+    'efficientvit_m3.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m3.pth'
+    ),
+    'efficientvit_m4.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m4.pth'
+    ),
+    'efficientvit_m5.r224_in1k': _cfg(
+        hf_hub_id='timm/',
+        #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m5.pth'
+    ),
+})
+
+
+def _create_efficientvit_msra(variant, pretrained=False, **kwargs):
+    out_indices = kwargs.pop('out_indices', (0, 1, 2))
+    model = build_model_with_cfg(
+        EfficientVitMsra,
+        variant,
+        pretrained,
+        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
+        **kwargs
+    )
+    return model
+
+
+@register_model
+def efficientvit_m0(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[64, 128, 192],
+        depth=[1, 2, 3],
+        num_heads=[4, 4, 4],
+        window_size=[7, 7, 7],
+        kernels=[5, 5, 5, 5]
+    )
+    return _create_efficientvit_msra('efficientvit_m0', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_m1(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[128, 144, 192],
+        depth=[1, 2, 3],
+        num_heads=[2, 3, 3],
+        window_size=[7, 7, 7],
+        kernels=[7, 5, 3, 3]
+    )
+    return _create_efficientvit_msra('efficientvit_m1', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_m2(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[128, 192, 224],
+        depth=[1, 2, 3],
+        num_heads=[4, 3, 2],
+        window_size=[7, 7, 7],
+        kernels=[7, 5, 3, 3]
+    )
+    return _create_efficientvit_msra('efficientvit_m2', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_m3(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[128, 240, 320],
+        depth=[1, 2, 3],
+        num_heads=[4, 3, 4],
+        window_size=[7, 7, 7],
+        kernels=[5, 5, 5, 5]
+    )
+    return _create_efficientvit_msra('efficientvit_m3', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_m4(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[128, 256, 384],
+        depth=[1, 2, 3],
+        num_heads=[4, 4, 4],
+        window_size=[7, 7, 7],
+        kernels=[7, 5, 3, 3]
+    )
+    return _create_efficientvit_msra('efficientvit_m4', pretrained=pretrained, **dict(model_args, **kwargs))
+
+
+@register_model
+def efficientvit_m5(pretrained=False, **kwargs):
+    model_args = dict(
+        img_size=224,
+        embed_dim=[192, 288, 384],
+        depth=[1, 3, 4],
+        num_heads=[3, 3, 4],
+        window_size=[7, 7, 7],
+        kernels=[7, 5, 3, 3]
+    )
+    return _create_efficientvit_msra('efficientvit_m5', pretrained=pretrained, **dict(model_args, **kwargs))