Slight improvement in EfficientNet-B2 native PyTorch weights
parent
b8762cc67d
commit
c3287aafb3
|
@ -87,7 +87,7 @@ I've leveraged the training scripts in this repository to train a few of the mod
|
||||||
#### @ 260x260
|
#### @ 260x260
|
||||||
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling |
|
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling |
|
||||||
|---|---|---|---|---|
|
|---|---|---|---|---|
|
||||||
| efficientnet_b2 | 79.668 (20.332) | 94.634 (5.366) | 9.11M | bicubic |
|
| efficientnet_b2 | 79.760 (20.240) | 94.714 (5.286) | 9.11M | bicubic |
|
||||||
|
|
||||||
### Ported Weights
|
### Ported Weights
|
||||||
|
|
||||||
|
|
|
@ -84,7 +84,7 @@ default_cfgs = {
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
|
||||||
input_size=(3, 240, 240), pool_size=(8, 8), interpolation='bicubic', crop_pct=0.882),
|
input_size=(3, 240, 240), pool_size=(8, 8), interpolation='bicubic', crop_pct=0.882),
|
||||||
'efficientnet_b2': _cfg(
|
'efficientnet_b2': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2-d4105846.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2-cf78dc4d.pth',
|
||||||
input_size=(3, 260, 260), pool_size=(9, 9), interpolation='bicubic', crop_pct=0.890),
|
input_size=(3, 260, 260), pool_size=(9, 9), interpolation='bicubic', crop_pct=0.890),
|
||||||
'efficientnet_b3': _cfg(
|
'efficientnet_b3': _cfg(
|
||||||
url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904),
|
url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904),
|
||||||
|
|
Loading…
Reference in New Issue