Initial mambaout work

mambaout
Ross Wightman 2024-08-23 10:14:06 -07:00
parent 6ee638a095
commit c6ef54eefa
2 changed files with 481 additions and 0 deletions

View File

@ -35,6 +35,7 @@ from .inception_v3 import *
from .inception_v4 import *
from .levit import *
from .maxxvit import *
from .mambaout import *
from .metaformer import *
from .mlp_mixer import *
from .mobilenetv3 import *

View File

@ -0,0 +1,480 @@
"""
MambaOut models for image classification.
Some implementations are modified from:
timm (https://github.com/rwightman/pytorch-image-models),
MetaFormer (https://github.com/sail-sg/metaformer),
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
"""
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath, LayerNorm
from .vision_transformer import LayerScale
from ._manipulate import checkpoint_seq
from timm.models.registry import register_model
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
class Stem(nn.Module):
r""" Code modified from InternImage:
https://github.com/OpenGVLab/InternImage
"""
def __init__(
self,
in_chs=3,
out_chs=96,
mid_norm: bool = True,
act_layer=nn.GELU,
norm_layer=LayerNorm,
):
super().__init__()
self.conv1 = nn.Conv2d(
in_chs,
out_chs // 2,
kernel_size=3,
stride=2,
padding=1
)
self.norm1 = norm_layer(out_chs // 2) if mid_norm else None
self.act = act_layer()
self.conv2 = nn.Conv2d(
out_chs // 2,
out_chs,
kernel_size=3,
stride=2,
padding=1
)
self.norm2 = norm_layer(out_chs)
def forward(self, x):
x = self.conv1(x)
if self.norm1 is not None:
x = x.permute(0, 2, 3, 1)
x = self.norm1(x)
x = x.permute(0, 3, 1, 2)
x = self.act(x)
x = self.conv2(x)
x = x.permute(0, 2, 3, 1)
x = self.norm2(x)
return x
class DownsampleNormFirst(nn.Module):
def __init__(
self,
in_chs=96,
out_chs=198,
norm_layer=LayerNorm,
):
super().__init__()
self.norm = norm_layer(in_chs)
self.conv = nn.Conv2d(
in_chs,
out_chs,
kernel_size=3,
stride=2,
padding=1
)
def forward(self, x):
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
x = self.conv(x)
x = x.permute(0, 2, 3, 1)
return x
class Downsample(nn.Module):
def __init__(
self,
in_chs=96,
out_chs=198,
norm_layer=LayerNorm,
):
super().__init__()
self.conv = nn.Conv2d(
in_chs,
out_chs,
kernel_size=3,
stride=2,
padding=1
)
self.norm = norm_layer(out_chs)
def forward(self, x):
x = x.permute(0, 3, 1, 2)
x = self.conv(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
return x
class MlpHead(nn.Module):
""" MLP classification head
"""
def __init__(
self,
dim,
num_classes=1000,
act_layer=nn.GELU,
mlp_ratio=4,
norm_layer=LayerNorm,
drop_rate=0.,
bias=True,
):
super().__init__()
hidden_features = int(mlp_ratio * dim)
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
self.act = act_layer()
self.norm = norm_layer(hidden_features)
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
self.head_dropout = nn.Dropout(drop_rate)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.norm(x)
x = self.head_dropout(x)
x = self.fc2(x)
return x
class GatedConvBlock(nn.Module):
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
Args:
conv_ratio: control the number of channels to conduct depthwise convolution.
Conduct convolution on partial channels can improve paraitcal efficiency.
The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
"""
def __init__(
self,
dim,
expansion_ratio=8 / 3,
kernel_size=7,
conv_ratio=1.0,
ls_init_value=None,
norm_layer=LayerNorm,
act_layer=nn.GELU,
drop_path=0.,
**kwargs
):
super().__init__()
self.norm = norm_layer(dim)
hidden = int(expansion_ratio * dim)
self.fc1 = nn.Linear(dim, hidden * 2)
self.act = act_layer()
conv_channels = int(conv_ratio * dim)
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
self.conv = nn.Conv2d(
conv_channels,
conv_channels,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=conv_channels
)
self.fc2 = nn.Linear(hidden, dim)
self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x # [B, H, W, C]
x = self.norm(x)
x = self.fc1(x)
g, i, c = torch.split(x, self.split_indices, dim=-1)
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
c = self.conv(c)
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
x = self.ls(x)
x = self.drop_path(x)
return x + shortcut
class MambaOutStage(nn.Module):
def __init__(
self,
dim,
dim_out: Optional[int] = None,
depth: int = 4,
expansion_ratio=8 / 3,
kernel_size=7,
conv_ratio=1.0,
downsample: bool = False,
ls_init_value: Optional[float] = None,
norm_layer=LayerNorm,
act_layer=nn.GELU,
drop_path=0.,
):
super().__init__()
dim_out = dim_out or dim
self.grad_checkpointing = False
if downsample:
self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer)
else:
assert dim == dim_out
self.downsample = nn.Identity()
self.blocks = nn.Sequential(*[
GatedConvBlock(
dim=dim_out,
expansion_ratio=expansion_ratio,
kernel_size=kernel_size,
conv_ratio=conv_ratio,
ls_init_value=ls_init_value,
norm_layer=norm_layer,
act_layer=act_layer,
drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path,
)
for j in range(depth)
])
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class MambaOut(nn.Module):
r""" MetaFormer
A PyTorch impl of : `MetaFormer Baselines for Vision` -
https://arxiv.org/abs/2210.13452
Args:
in_chans (int): Number of input image channels. Default: 3.
num_classes (int): Number of classes for classification head. Default: 1000.
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
downsample_layers: (list or tuple): Downsampling layers before each stage.
drop_path_rate (float): Stochastic depth rate. Default: 0.
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
head_fn: classification head. Default: nn.Linear.
head_dropout (float): dropout for MLP classifier. Default: 0.
"""
def __init__(
self,
in_chans=3,
num_classes=1000,
depths=(3, 3, 9, 3),
dims=(96, 192, 384, 576),
norm_layer=LayerNorm,
act_layer=nn.GELU,
conv_ratio=1.0,
kernel_size=7,
ls_init_value=None,
drop_path_rate=0.,
drop_rate=0.,
output_norm=LayerNorm,
head_fn=MlpHead,
**kwargs,
):
super().__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
if not isinstance(depths, (list, tuple)):
depths = [depths] # it means the model has only one stage
if not isinstance(dims, (list, tuple)):
dims = [dims]
num_stage = len(depths)
self.num_stage = num_stage
self.stem = Stem(in_chans, dims[0], act_layer=act_layer, norm_layer=norm_layer)
prev_dim = dims[0]
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
self.stages = nn.ModuleList()
cur = 0
for i in range(num_stage):
dim = dims[i]
stage = MambaOutStage(
dim=prev_dim,
dim_out=dim,
depth=depths[i],
kernel_size=kernel_size,
conv_ratio=conv_ratio,
downsample=i > 0,
ls_init_value=ls_init_value,
norm_layer=norm_layer,
act_layer=act_layer,
drop_path=dp_rates[i],
)
self.stages.append(stage)
prev_dim = dim
cur += depths[i]
self.norm = output_norm(prev_dim)
self.head = head_fn(prev_dim, num_classes, drop_rate=drop_rate)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {'norm'}
def forward_features(self, x):
x = self.stem(x)
for s in self.stages:
x = s(x)
return x
def forward_head(self, x):
x = x.mean((1, 2))
x = self.norm(x)
x = self.head(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': 1.0, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
**kwargs
}
default_cfgs = {
'mambaout_femto': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
'mambaout_kobe': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_kobe.pth'),
'mambaout_tiny': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
'mambaout_small': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
'mambaout_base': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
'mambaout_small_rw': _cfg(),
'mambaout_base_rw': _cfg(),
}
# a series of MambaOut models
@register_model
def mambaout_femto(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 3, 9, 3],
dims=[48, 96, 192, 288],
**kwargs)
model.default_cfg = default_cfgs['mambaout_femto']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
# Kobe Memorial Version with 24 Gated CNN blocks
@register_model
def mambaout_kobe(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 3, 15, 3],
dims=[48, 96, 192, 288],
**kwargs)
model.default_cfg = default_cfgs['mambaout_kobe']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_tiny(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 576],
**kwargs)
model.default_cfg = default_cfgs['mambaout_tiny']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_small(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 4, 27, 3],
dims=[96, 192, 384, 576],
**kwargs)
model.default_cfg = default_cfgs['mambaout_small']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_base(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 4, 27, 3],
dims=[128, 256, 512, 768],
**kwargs)
model.default_cfg = default_cfgs['mambaout_base']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_small_rw(pretrained=False, **kwargs):
model = MambaOut(
depths=[3, 4, 27, 3],
dims=[96, 192, 384, 576],
ls_init_value=1e-6,
**kwargs,
)
model.default_cfg = default_cfgs['mambaout_small']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def mambaout_base_rw(pretrained=False, **kwargs):
model = MambaOut(
depths=(3, 4, 27, 3),
dims=(128, 256, 512, 768),
ls_init_value=1e-6,
**kwargs
)
model.default_cfg = default_cfgs['mambaout_base']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model