Initial mambaout work
parent
6ee638a095
commit
c6ef54eefa
|
@ -35,6 +35,7 @@ from .inception_v3 import *
|
|||
from .inception_v4 import *
|
||||
from .levit import *
|
||||
from .maxxvit import *
|
||||
from .mambaout import *
|
||||
from .metaformer import *
|
||||
from .mlp_mixer import *
|
||||
from .mobilenetv3 import *
|
||||
|
|
|
@ -0,0 +1,480 @@
|
|||
"""
|
||||
MambaOut models for image classification.
|
||||
Some implementations are modified from:
|
||||
timm (https://github.com/rwightman/pytorch-image-models),
|
||||
MetaFormer (https://github.com/sail-sg/metaformer),
|
||||
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
|
||||
"""
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from timm.models.layers import trunc_normal_, DropPath, LayerNorm
|
||||
from .vision_transformer import LayerScale
|
||||
from ._manipulate import checkpoint_seq
|
||||
from timm.models.registry import register_model
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
|
||||
|
||||
class Stem(nn.Module):
|
||||
r""" Code modified from InternImage:
|
||||
https://github.com/OpenGVLab/InternImage
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chs=3,
|
||||
out_chs=96,
|
||||
mid_norm: bool = True,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs // 2,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1
|
||||
)
|
||||
self.norm1 = norm_layer(out_chs // 2) if mid_norm else None
|
||||
self.act = act_layer()
|
||||
self.conv2 = nn.Conv2d(
|
||||
out_chs // 2,
|
||||
out_chs,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1
|
||||
)
|
||||
self.norm2 = norm_layer(out_chs)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
if self.norm1 is not None:
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
x = self.norm1(x)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = self.act(x)
|
||||
x = self.conv2(x)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
x = self.norm2(x)
|
||||
return x
|
||||
|
||||
|
||||
class DownsampleNormFirst(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chs=96,
|
||||
out_chs=198,
|
||||
norm_layer=LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm = norm_layer(in_chs)
|
||||
self.conv = nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = self.conv(x)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chs=96,
|
||||
out_chs=198,
|
||||
norm_layer=LayerNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1
|
||||
)
|
||||
self.norm = norm_layer(out_chs)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = self.conv(x)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class MlpHead(nn.Module):
|
||||
""" MLP classification head
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_classes=1000,
|
||||
act_layer=nn.GELU,
|
||||
mlp_ratio=4,
|
||||
norm_layer=LayerNorm,
|
||||
drop_rate=0.,
|
||||
bias=True,
|
||||
):
|
||||
super().__init__()
|
||||
hidden_features = int(mlp_ratio * dim)
|
||||
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
|
||||
self.act = act_layer()
|
||||
self.norm = norm_layer(hidden_features)
|
||||
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
|
||||
self.head_dropout = nn.Dropout(drop_rate)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.norm(x)
|
||||
x = self.head_dropout(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class GatedConvBlock(nn.Module):
|
||||
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
|
||||
Args:
|
||||
conv_ratio: control the number of channels to conduct depthwise convolution.
|
||||
Conduct convolution on partial channels can improve paraitcal efficiency.
|
||||
The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
|
||||
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
expansion_ratio=8 / 3,
|
||||
kernel_size=7,
|
||||
conv_ratio=1.0,
|
||||
ls_init_value=None,
|
||||
norm_layer=LayerNorm,
|
||||
act_layer=nn.GELU,
|
||||
drop_path=0.,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.norm = norm_layer(dim)
|
||||
hidden = int(expansion_ratio * dim)
|
||||
self.fc1 = nn.Linear(dim, hidden * 2)
|
||||
self.act = act_layer()
|
||||
conv_channels = int(conv_ratio * dim)
|
||||
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
|
||||
self.conv = nn.Conv2d(
|
||||
conv_channels,
|
||||
conv_channels,
|
||||
kernel_size=kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
groups=conv_channels
|
||||
)
|
||||
self.fc2 = nn.Linear(hidden, dim)
|
||||
self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity()
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = x # [B, H, W, C]
|
||||
x = self.norm(x)
|
||||
x = self.fc1(x)
|
||||
g, i, c = torch.split(x, self.split_indices, dim=-1)
|
||||
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
|
||||
c = self.conv(c)
|
||||
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
|
||||
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
|
||||
x = self.ls(x)
|
||||
x = self.drop_path(x)
|
||||
return x + shortcut
|
||||
|
||||
|
||||
class MambaOutStage(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out: Optional[int] = None,
|
||||
depth: int = 4,
|
||||
expansion_ratio=8 / 3,
|
||||
kernel_size=7,
|
||||
conv_ratio=1.0,
|
||||
downsample: bool = False,
|
||||
ls_init_value: Optional[float] = None,
|
||||
norm_layer=LayerNorm,
|
||||
act_layer=nn.GELU,
|
||||
drop_path=0.,
|
||||
):
|
||||
super().__init__()
|
||||
dim_out = dim_out or dim
|
||||
self.grad_checkpointing = False
|
||||
|
||||
if downsample:
|
||||
self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer)
|
||||
else:
|
||||
assert dim == dim_out
|
||||
self.downsample = nn.Identity()
|
||||
|
||||
self.blocks = nn.Sequential(*[
|
||||
GatedConvBlock(
|
||||
dim=dim_out,
|
||||
expansion_ratio=expansion_ratio,
|
||||
kernel_size=kernel_size,
|
||||
conv_ratio=conv_ratio,
|
||||
ls_init_value=ls_init_value,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path,
|
||||
)
|
||||
for j in range(depth)
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.downsample(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint_seq(self.blocks, x)
|
||||
else:
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class MambaOut(nn.Module):
|
||||
r""" MetaFormer
|
||||
A PyTorch impl of : `MetaFormer Baselines for Vision` -
|
||||
https://arxiv.org/abs/2210.13452
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input image channels. Default: 3.
|
||||
num_classes (int): Number of classes for classification head. Default: 1000.
|
||||
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
|
||||
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
|
||||
downsample_layers: (list or tuple): Downsampling layers before each stage.
|
||||
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
||||
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
|
||||
head_fn: classification head. Default: nn.Linear.
|
||||
head_dropout (float): dropout for MLP classifier. Default: 0.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
depths=(3, 3, 9, 3),
|
||||
dims=(96, 192, 384, 576),
|
||||
norm_layer=LayerNorm,
|
||||
act_layer=nn.GELU,
|
||||
conv_ratio=1.0,
|
||||
kernel_size=7,
|
||||
ls_init_value=None,
|
||||
drop_path_rate=0.,
|
||||
drop_rate=0.,
|
||||
output_norm=LayerNorm,
|
||||
head_fn=MlpHead,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
if not isinstance(depths, (list, tuple)):
|
||||
depths = [depths] # it means the model has only one stage
|
||||
if not isinstance(dims, (list, tuple)):
|
||||
dims = [dims]
|
||||
|
||||
num_stage = len(depths)
|
||||
self.num_stage = num_stage
|
||||
|
||||
self.stem = Stem(in_chans, dims[0], act_layer=act_layer, norm_layer=norm_layer)
|
||||
prev_dim = dims[0]
|
||||
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
self.stages = nn.ModuleList()
|
||||
cur = 0
|
||||
for i in range(num_stage):
|
||||
dim = dims[i]
|
||||
stage = MambaOutStage(
|
||||
dim=prev_dim,
|
||||
dim_out=dim,
|
||||
depth=depths[i],
|
||||
kernel_size=kernel_size,
|
||||
conv_ratio=conv_ratio,
|
||||
downsample=i > 0,
|
||||
ls_init_value=ls_init_value,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
drop_path=dp_rates[i],
|
||||
)
|
||||
self.stages.append(stage)
|
||||
prev_dim = dim
|
||||
cur += depths[i]
|
||||
|
||||
self.norm = output_norm(prev_dim)
|
||||
|
||||
self.head = head_fn(prev_dim, num_classes, drop_rate=drop_rate)
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'norm'}
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
for s in self.stages:
|
||||
x = s(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x):
|
||||
x = x.mean((1, 2))
|
||||
x = self.norm(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||
'crop_pct': 1.0, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
'mambaout_femto': _cfg(
|
||||
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
|
||||
'mambaout_kobe': _cfg(
|
||||
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_kobe.pth'),
|
||||
'mambaout_tiny': _cfg(
|
||||
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
|
||||
'mambaout_small': _cfg(
|
||||
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
|
||||
'mambaout_base': _cfg(
|
||||
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
|
||||
'mambaout_small_rw': _cfg(),
|
||||
'mambaout_base_rw': _cfg(),
|
||||
}
|
||||
|
||||
|
||||
# a series of MambaOut models
|
||||
@register_model
|
||||
def mambaout_femto(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 3, 9, 3],
|
||||
dims=[48, 96, 192, 288],
|
||||
**kwargs)
|
||||
model.default_cfg = default_cfgs['mambaout_femto']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
# Kobe Memorial Version with 24 Gated CNN blocks
|
||||
@register_model
|
||||
def mambaout_kobe(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 3, 15, 3],
|
||||
dims=[48, 96, 192, 288],
|
||||
**kwargs)
|
||||
model.default_cfg = default_cfgs['mambaout_kobe']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mambaout_tiny(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 3, 9, 3],
|
||||
dims=[96, 192, 384, 576],
|
||||
**kwargs)
|
||||
model.default_cfg = default_cfgs['mambaout_tiny']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mambaout_small(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 4, 27, 3],
|
||||
dims=[96, 192, 384, 576],
|
||||
**kwargs)
|
||||
model.default_cfg = default_cfgs['mambaout_small']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mambaout_base(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 4, 27, 3],
|
||||
dims=[128, 256, 512, 768],
|
||||
**kwargs)
|
||||
model.default_cfg = default_cfgs['mambaout_base']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mambaout_small_rw(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=[3, 4, 27, 3],
|
||||
dims=[96, 192, 384, 576],
|
||||
ls_init_value=1e-6,
|
||||
**kwargs,
|
||||
)
|
||||
model.default_cfg = default_cfgs['mambaout_small']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mambaout_base_rw(pretrained=False, **kwargs):
|
||||
model = MambaOut(
|
||||
depths=(3, 4, 27, 3),
|
||||
dims=(128, 256, 512, 768),
|
||||
ls_init_value=1e-6,
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = default_cfgs['mambaout_base']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
Loading…
Reference in New Issue