mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add HRNet feature extraction, fix senet type, lower feature testing res to 96x96
This commit is contained in:
parent
2ac663f340
commit
c9d54bc1c3
@ -109,12 +109,13 @@ def test_model_forward_torchscript(model_name, batch_size):
|
|||||||
|
|
||||||
|
|
||||||
EXCLUDE_FEAT_FILTERS = [
|
EXCLUDE_FEAT_FILTERS = [
|
||||||
'hrnet*', '*pruned*', # hopefully fix at some point
|
'*pruned*', # hopefully fix at some point
|
||||||
]
|
]
|
||||||
if 'GITHUB_ACTIONS' in os.environ and 'Linux' in platform.system():
|
if 'GITHUB_ACTIONS' in os.environ and 'Linux' in platform.system():
|
||||||
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
||||||
EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d']
|
EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d']
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.timeout(120)
|
@pytest.mark.timeout(120)
|
||||||
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
|
||||||
@pytest.mark.parametrize('batch_size', [1])
|
@pytest.mark.parametrize('batch_size', [1])
|
||||||
@ -124,7 +125,7 @@ def test_model_forward_features(model_name, batch_size):
|
|||||||
model.eval()
|
model.eval()
|
||||||
expected_channels = model.feature_info.channels()
|
expected_channels = model.feature_info.channels()
|
||||||
assert len(expected_channels) >= 4 # all models here should have at least 4 feature levels by default, some 5 or 6
|
assert len(expected_channels) >= 4 # all models here should have at least 4 feature levels by default, some 5 or 6
|
||||||
input_size = (3, 128, 128) # jit compile is already a bit slow and we've tested normal res already...
|
input_size = (3, 96, 96) # jit compile is already a bit slow and we've tested normal res already...
|
||||||
outputs = model(torch.randn((batch_size, *input_size)))
|
outputs = model(torch.randn((batch_size, *input_size)))
|
||||||
assert len(expected_channels) == len(outputs)
|
assert len(expected_channels) == len(outputs)
|
||||||
for e, o in zip(expected_channels, outputs):
|
for e, o in zip(expected_channels, outputs):
|
||||||
|
@ -8,17 +8,15 @@ Original header:
|
|||||||
Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
Written by Bin Xiao (Bin.Xiao@microsoft.com)
|
||||||
Modified by Ke Sun (sunk@mail.ustc.edu.cn)
|
Modified by Ke Sun (sunk@mail.ustc.edu.cn)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
|
from .features import FeatureInfo
|
||||||
from .helpers import build_model_with_cfg
|
from .helpers import build_model_with_cfg
|
||||||
from .layers import SelectAdaptivePool2d
|
from .layers import SelectAdaptivePool2d
|
||||||
from .registry import register_model
|
from .registry import register_model
|
||||||
@ -403,32 +401,23 @@ class HighResolutionModule(nn.Module):
|
|||||||
self.branches = self._make_branches(
|
self.branches = self._make_branches(
|
||||||
num_branches, blocks, num_blocks, num_channels)
|
num_branches, blocks, num_blocks, num_channels)
|
||||||
self.fuse_layers = self._make_fuse_layers()
|
self.fuse_layers = self._make_fuse_layers()
|
||||||
self.relu = nn.ReLU(False)
|
self.fuse_act = nn.ReLU(False)
|
||||||
|
|
||||||
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels):
|
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels):
|
||||||
|
error_msg = ''
|
||||||
if num_branches != len(num_blocks):
|
if num_branches != len(num_blocks):
|
||||||
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(num_branches, len(num_blocks))
|
||||||
num_branches, len(num_blocks))
|
elif num_branches != len(num_channels):
|
||||||
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(num_branches, len(num_channels))
|
||||||
|
elif num_branches != len(num_inchannels):
|
||||||
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(num_branches, len(num_inchannels))
|
||||||
|
if error_msg:
|
||||||
logger.error(error_msg)
|
logger.error(error_msg)
|
||||||
raise ValueError(error_msg)
|
raise ValueError(error_msg)
|
||||||
|
|
||||||
if num_branches != len(num_channels):
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1):
|
||||||
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
|
|
||||||
num_branches, len(num_channels))
|
|
||||||
logger.error(error_msg)
|
|
||||||
raise ValueError(error_msg)
|
|
||||||
|
|
||||||
if num_branches != len(num_inchannels):
|
|
||||||
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
|
|
||||||
num_branches, len(num_inchannels))
|
|
||||||
logger.error(error_msg)
|
|
||||||
raise ValueError(error_msg)
|
|
||||||
|
|
||||||
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
|
|
||||||
stride=1):
|
|
||||||
downsample = None
|
downsample = None
|
||||||
if stride != 1 or \
|
if stride != 1 or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
|
||||||
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
|
|
||||||
downsample = nn.Sequential(
|
downsample = nn.Sequential(
|
||||||
nn.Conv2d(
|
nn.Conv2d(
|
||||||
self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion,
|
self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion,
|
||||||
@ -489,22 +478,22 @@ class HighResolutionModule(nn.Module):
|
|||||||
def get_num_inchannels(self):
|
def get_num_inchannels(self):
|
||||||
return self.num_inchannels
|
return self.num_inchannels
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x: List[torch.Tensor]):
|
||||||
if self.num_branches == 1:
|
if self.num_branches == 1:
|
||||||
return [self.branches[0](x[0])]
|
return [self.branches[0](x[0])]
|
||||||
|
|
||||||
for i in range(self.num_branches):
|
for i, branch in enumerate(self.branches):
|
||||||
x[i] = self.branches[i](x[i])
|
x[i] = branch(x[i])
|
||||||
|
|
||||||
x_fuse = []
|
x_fuse = []
|
||||||
for i in range(len(self.fuse_layers)):
|
for i, fuse_outer in enumerate(self.fuse_layers):
|
||||||
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
y = x[0] if i == 0 else fuse_outer[0](x[0])
|
||||||
for j in range(1, self.num_branches):
|
for j in range(1, self.num_branches):
|
||||||
if i == j:
|
if i == j:
|
||||||
y = y + x[j]
|
y = y + x[j]
|
||||||
else:
|
else:
|
||||||
y = y + self.fuse_layers[i][j](x[j])
|
y = y + fuse_outer[j](x[j])
|
||||||
x_fuse.append(self.relu(y))
|
x_fuse.append(self.fuse_act(y))
|
||||||
|
|
||||||
return x_fuse
|
return x_fuse
|
||||||
|
|
||||||
@ -517,7 +506,7 @@ blocks_dict = {
|
|||||||
|
|
||||||
class HighResolutionNet(nn.Module):
|
class HighResolutionNet(nn.Module):
|
||||||
|
|
||||||
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0):
|
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, head='classification'):
|
||||||
super(HighResolutionNet, self).__init__()
|
super(HighResolutionNet, self).__init__()
|
||||||
self.num_classes = num_classes
|
self.num_classes = num_classes
|
||||||
self.drop_rate = drop_rate
|
self.drop_rate = drop_rate
|
||||||
@ -525,9 +514,10 @@ class HighResolutionNet(nn.Module):
|
|||||||
stem_width = cfg['STEM_WIDTH']
|
stem_width = cfg['STEM_WIDTH']
|
||||||
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False)
|
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False)
|
||||||
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM)
|
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM)
|
||||||
|
self.act1 = nn.ReLU(inplace=True)
|
||||||
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
||||||
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM)
|
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM)
|
||||||
self.relu = nn.ReLU(inplace=True)
|
self.act2 = nn.ReLU(inplace=True)
|
||||||
|
|
||||||
self.stage1_cfg = cfg['STAGE1']
|
self.stage1_cfg = cfg['STAGE1']
|
||||||
num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
|
num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
|
||||||
@ -557,31 +547,49 @@ class HighResolutionNet(nn.Module):
|
|||||||
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
|
||||||
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True)
|
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True)
|
||||||
|
|
||||||
# Classification Head
|
self.head = head
|
||||||
self.num_features = 2048
|
self.head_channels = None # set if _make_head called
|
||||||
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head(pre_stage_channels)
|
if head == 'classification':
|
||||||
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
# Classification Head
|
||||||
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
self.num_features = 2048
|
||||||
|
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head(pre_stage_channels)
|
||||||
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
||||||
|
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
||||||
|
elif head == 'incre':
|
||||||
|
self.num_features = 2048
|
||||||
|
self.incre_modules, _, _ = self._make_head(pre_stage_channels, True)
|
||||||
|
else:
|
||||||
|
self.incre_modules = None
|
||||||
|
self.num_features = 256
|
||||||
|
|
||||||
|
curr_stride = 2
|
||||||
|
# module names aren't actually valid here, hook or FeatureNet based extraction would not work
|
||||||
|
self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')]
|
||||||
|
for i, c in enumerate(self.head_channels if self.head_channels else num_channels):
|
||||||
|
curr_stride *= 2
|
||||||
|
c = c * 4 if self.head_channels else c # head block expansion factor of 4
|
||||||
|
self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')]
|
||||||
|
|
||||||
self.init_weights()
|
self.init_weights()
|
||||||
|
|
||||||
def _make_head(self, pre_stage_channels):
|
def _make_head(self, pre_stage_channels, incre_only=False):
|
||||||
head_block = Bottleneck
|
head_block = Bottleneck
|
||||||
head_channels = [32, 64, 128, 256]
|
self.head_channels = [32, 64, 128, 256]
|
||||||
|
|
||||||
# Increasing the #channels on each resolution
|
# Increasing the #channels on each resolution
|
||||||
# from C, 2C, 4C, 8C to 128, 256, 512, 1024
|
# from C, 2C, 4C, 8C to 128, 256, 512, 1024
|
||||||
incre_modules = []
|
incre_modules = []
|
||||||
for i, channels in enumerate(pre_stage_channels):
|
for i, channels in enumerate(pre_stage_channels):
|
||||||
incre_modules.append(
|
incre_modules.append(self._make_layer(head_block, channels, self.head_channels[i], 1, stride=1))
|
||||||
self._make_layer(head_block, channels, head_channels[i], 1, stride=1))
|
|
||||||
incre_modules = nn.ModuleList(incre_modules)
|
incre_modules = nn.ModuleList(incre_modules)
|
||||||
|
if incre_only:
|
||||||
|
return incre_modules, None, None
|
||||||
|
|
||||||
# downsampling modules
|
# downsampling modules
|
||||||
downsamp_modules = []
|
downsamp_modules = []
|
||||||
for i in range(len(pre_stage_channels) - 1):
|
for i in range(len(pre_stage_channels) - 1):
|
||||||
in_channels = head_channels[i] * head_block.expansion
|
in_channels = self.head_channels[i] * head_block.expansion
|
||||||
out_channels = head_channels[i + 1] * head_block.expansion
|
out_channels = self.head_channels[i + 1] * head_block.expansion
|
||||||
downsamp_module = nn.Sequential(
|
downsamp_module = nn.Sequential(
|
||||||
nn.Conv2d(
|
nn.Conv2d(
|
||||||
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1),
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1),
|
||||||
@ -593,7 +601,7 @@ class HighResolutionNet(nn.Module):
|
|||||||
|
|
||||||
final_layer = nn.Sequential(
|
final_layer = nn.Sequential(
|
||||||
nn.Conv2d(
|
nn.Conv2d(
|
||||||
in_channels=head_channels[3] * head_block.expansion,
|
in_channels=self.head_channels[3] * head_block.expansion,
|
||||||
out_channels=self.num_features, kernel_size=1, stride=1, padding=0
|
out_channels=self.num_features, kernel_size=1, stride=1, padding=0
|
||||||
),
|
),
|
||||||
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM),
|
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM),
|
||||||
@ -655,11 +663,7 @@ class HighResolutionNet(nn.Module):
|
|||||||
modules = []
|
modules = []
|
||||||
for i in range(num_modules):
|
for i in range(num_modules):
|
||||||
# multi_scale_output is only used last module
|
# multi_scale_output is only used last module
|
||||||
if not multi_scale_output and i == num_modules - 1:
|
reset_multi_scale_output = multi_scale_output or i < num_modules - 1
|
||||||
reset_multi_scale_output = False
|
|
||||||
else:
|
|
||||||
reset_multi_scale_output = True
|
|
||||||
|
|
||||||
modules.append(HighResolutionModule(
|
modules.append(HighResolutionModule(
|
||||||
num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output)
|
num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output)
|
||||||
)
|
)
|
||||||
@ -688,40 +692,35 @@ class HighResolutionNet(nn.Module):
|
|||||||
else:
|
else:
|
||||||
self.classifier = nn.Identity()
|
self.classifier = nn.Identity()
|
||||||
|
|
||||||
def forward_features(self, x):
|
def stages(self, x) -> List[torch.Tensor]:
|
||||||
x = self.conv1(x)
|
|
||||||
x = self.bn1(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
x = self.conv2(x)
|
|
||||||
x = self.bn2(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
x = self.layer1(x)
|
x = self.layer1(x)
|
||||||
|
|
||||||
x_list = []
|
xl = [t(x) for i, t in enumerate(self.transition1)]
|
||||||
for i in range(len(self.transition1)):
|
yl = self.stage2(xl)
|
||||||
x_list.append(self.transition1[i](x))
|
|
||||||
y_list = self.stage2(x_list)
|
|
||||||
|
|
||||||
x_list = []
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition2)]
|
||||||
for i in range(len(self.transition2)):
|
yl = self.stage3(xl)
|
||||||
if not isinstance(self.transition2[i], nn.Identity):
|
|
||||||
x_list.append(self.transition2[i](y_list[-1]))
|
|
||||||
else:
|
|
||||||
x_list.append(y_list[i])
|
|
||||||
y_list = self.stage3(x_list)
|
|
||||||
|
|
||||||
x_list = []
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition3)]
|
||||||
for i in range(len(self.transition3)):
|
yl = self.stage4(xl)
|
||||||
if not isinstance(self.transition3[i], nn.Identity):
|
return yl
|
||||||
x_list.append(self.transition3[i](y_list[-1]))
|
|
||||||
else:
|
def forward_features(self, x):
|
||||||
x_list.append(y_list[i])
|
# Stem
|
||||||
y_list = self.stage4(x_list)
|
x = self.conv1(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
x = self.act1(x)
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.bn2(x)
|
||||||
|
x = self.act2(x)
|
||||||
|
|
||||||
|
# Stages
|
||||||
|
yl = self.stages(x)
|
||||||
|
|
||||||
# Classification Head
|
# Classification Head
|
||||||
y = self.incre_modules[0](y_list[0])
|
y = self.incre_modules[0](yl[0])
|
||||||
for i in range(len(self.downsamp_modules)):
|
for i, down in enumerate(self.downsamp_modules):
|
||||||
y = self.incre_modules[i + 1](y_list[i + 1]) + self.downsamp_modules[i](y)
|
y = self.incre_modules[i + 1](yl[i + 1]) + down(y)
|
||||||
y = self.final_layer(y)
|
y = self.final_layer(y)
|
||||||
return y
|
return y
|
||||||
|
|
||||||
@ -734,10 +733,55 @@ class HighResolutionNet(nn.Module):
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class HighResolutionNetFeatures(HighResolutionNet):
|
||||||
|
"""HighResolutionNet feature extraction
|
||||||
|
|
||||||
|
The design of HRNet makes it easy to grab feature maps, this class provides a simple wrapper to do so.
|
||||||
|
It would be more complicated to use the FeatureNet helpers.
|
||||||
|
|
||||||
|
The `feature_location=incre` allows grabbing increased channel count features using part of the
|
||||||
|
classification head. If `feature_location=''` the default HRNet features are returned. First stem
|
||||||
|
conv is used for stride 2 features.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0,
|
||||||
|
feature_location='incre', out_indices=(0, 1, 2, 3, 4)):
|
||||||
|
assert feature_location in ('incre', '')
|
||||||
|
super(HighResolutionNetFeatures, self).__init__(
|
||||||
|
cfg, in_chans=in_chans, num_classes=num_classes, global_pool=global_pool,
|
||||||
|
drop_rate=drop_rate, head=feature_location)
|
||||||
|
self.feature_info = FeatureInfo(self.feature_info, out_indices)
|
||||||
|
self._out_idx = {i for i in out_indices}
|
||||||
|
|
||||||
|
def forward_features(self, x):
|
||||||
|
assert False, 'Not supported'
|
||||||
|
|
||||||
|
def forward(self, x) -> List[torch.tensor]:
|
||||||
|
out = []
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
x = self.act1(x)
|
||||||
|
if 0 in self._out_idx:
|
||||||
|
out.append(x)
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.bn2(x)
|
||||||
|
x = self.act2(x)
|
||||||
|
x = self.stages(x)
|
||||||
|
if self.incre_modules is not None:
|
||||||
|
x = [incre(f) for f, incre in zip(x, self.incre_modules)]
|
||||||
|
for i, f in enumerate(x):
|
||||||
|
if i + 1 in self._out_idx:
|
||||||
|
out.append(f)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
def _create_hrnet(variant, pretrained, **model_kwargs):
|
def _create_hrnet(variant, pretrained, **model_kwargs):
|
||||||
assert not model_kwargs.pop('features_only', False) # feature extraction not figured out yet
|
model_cls = HighResolutionNet
|
||||||
|
if model_kwargs.pop('features_only', False):
|
||||||
|
model_cls = HighResolutionNetFeatures
|
||||||
|
|
||||||
return build_model_with_cfg(
|
return build_model_with_cfg(
|
||||||
HighResolutionNet, variant, pretrained, default_cfg=default_cfgs[variant],
|
model_cls, variant, pretrained, default_cfg=default_cfgs[variant],
|
||||||
model_cfg=cfg_cls[variant], **model_kwargs)
|
model_cfg=cfg_cls[variant], **model_kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
@ -423,14 +423,14 @@ def legacy_seresnet34(pretrained=False, **kwargs):
|
|||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def legacy_seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
def legacy_seresnet50(pretrained=False, **kwargs):
|
||||||
model_args = dict(
|
model_args = dict(
|
||||||
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
|
||||||
return _create_senet('seresnet50', pretrained, **model_args)
|
return _create_senet('seresnet50', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def legacy_seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
def legacy_seresnet101(pretrained=False, **kwargs):
|
||||||
model_args = dict(
|
model_args = dict(
|
||||||
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
|
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
|
||||||
return _create_senet('seresnet101', pretrained, **model_args)
|
return _create_senet('seresnet101', pretrained, **model_args)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user