mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
More test fixes, pool size for 256x256 maxvit models
This commit is contained in:
parent
e939ed19b9
commit
cac0a4570a
@ -28,7 +28,7 @@ NON_STD_FILTERS = [
|
||||
'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
|
||||
'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit_*',
|
||||
'poolformer_*', 'volo_*', 'sequencer2d_*', 'swinv2_*', 'pvt_v2*', 'mvitv2*', 'gcvit*', 'efficientformer*',
|
||||
'coatne?t_*', 'max?vit_*',
|
||||
'coatnet*', 'coatnext*', 'maxvit*', 'maxxvit*',
|
||||
]
|
||||
NUM_NON_STD = len(NON_STD_FILTERS)
|
||||
|
||||
|
@ -29,7 +29,7 @@ def _cfg(url='', **kwargs):
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
|
||||
'crop_pct': .95, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.conv1', 'classifier': 'head',
|
||||
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'),
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
@ -94,6 +94,7 @@ default_cfgs = {
|
||||
'coatnet_rmlp_0_rw_224': _cfg(url=''),
|
||||
'coatnet_rmlp_1_rw_224': _cfg(
|
||||
url=''),
|
||||
'coatnet_nano_cc_224': _cfg(url=''),
|
||||
'coatnext_nano_rw_224': _cfg(url=''),
|
||||
|
||||
# Trying to be like the CoAtNet paper configs
|
||||
@ -105,12 +106,12 @@ default_cfgs = {
|
||||
'coatnet_5_224': _cfg(url=''),
|
||||
|
||||
# Experimental configs
|
||||
'maxvit_pico_rw_256': _cfg(url='', input_size=(3, 256, 256)),
|
||||
'maxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256)),
|
||||
'maxvit_pico_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
'maxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
'maxvit_tiny_rw_224': _cfg(url=''),
|
||||
'maxvit_tiny_rw_256': _cfg(url='', input_size=(3, 256, 256)),
|
||||
'maxvit_tiny_cm_256': _cfg(url='', input_size=(3, 256, 256)),
|
||||
'maxxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256)),
|
||||
'maxvit_tiny_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
'maxvit_tiny_cm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
'maxxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
|
||||
# Trying to be like the MaxViT paper configs
|
||||
'maxvit_tiny_224': _cfg(url=''),
|
||||
@ -1052,7 +1053,6 @@ class PartitionAttention(nn.Module):
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def _partition_attn(self, x):
|
||||
C = x.shape[-1]
|
||||
img_size = x.shape[1:3]
|
||||
if self.partition_block:
|
||||
partitioned = window_partition(x, self.partition_size)
|
||||
@ -1415,6 +1415,7 @@ class Stem(nn.Module):
|
||||
self.norm1 = norm_act_layer(out_chs[0])
|
||||
self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1)
|
||||
|
||||
@torch.jit.ignore
|
||||
def init_weights(self, scheme=''):
|
||||
named_apply(partial(_init_conv, scheme=scheme), self)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user