mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Update vit_relpos w/ some additional weights, some cleanup to match recent vit updates, more MLP log coord experiments.
This commit is contained in:
parent
58621723bd
commit
ce65a7b29f
@ -8,6 +8,7 @@ import math
|
||||
import logging
|
||||
from functools import partial
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
@ -16,7 +17,7 @@ import torch.nn.functional as F
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
||||
from .helpers import build_model_with_cfg, named_apply
|
||||
from .helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply
|
||||
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, to_2tuple
|
||||
from .registry import register_model
|
||||
|
||||
@ -47,9 +48,16 @@ default_cfgs = {
|
||||
'vit_relpos_base_patch16_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth'),
|
||||
|
||||
'vit_srelpos_small_patch16_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth'),
|
||||
'vit_srelpos_medium_patch16_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth'),
|
||||
|
||||
'vit_relpos_medium_patch16_cls_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth'),
|
||||
'vit_relpos_base_patch16_cls_224': _cfg(
|
||||
url=''),
|
||||
'vit_relpos_base_patch16_gapcls_224': _cfg(
|
||||
'vit_relpos_base_patch16_clsgap_224': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth'),
|
||||
|
||||
'vit_relpos_small_patch16_rpn_224': _cfg(url=''),
|
||||
@ -59,35 +67,43 @@ default_cfgs = {
|
||||
}
|
||||
|
||||
|
||||
def gen_relative_position_index(win_size: Tuple[int, int], class_token: int = 0) -> torch.Tensor:
|
||||
# cut and paste w/ modifications from swin / beit codebase
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
def gen_relative_position_index(
|
||||
q_size: Tuple[int, int],
|
||||
k_size: Tuple[int, int] = None,
|
||||
class_token: bool = False) -> torch.Tensor:
|
||||
# Adapted with significant modifications from Swin / BeiT codebases
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
window_area = win_size[0] * win_size[1]
|
||||
coords = torch.stack(torch.meshgrid([torch.arange(win_size[0]), torch.arange(win_size[1])])).flatten(1) # 2, Wh, Ww
|
||||
relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += win_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += win_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * win_size[1] - 1
|
||||
q_coords = torch.stack(torch.meshgrid([torch.arange(q_size[0]), torch.arange(q_size[1])])).flatten(1) # 2, Wh, Ww
|
||||
if k_size is None:
|
||||
k_coords = q_coords
|
||||
k_size = q_size
|
||||
else:
|
||||
# different q vs k sizes is a WIP
|
||||
k_coords = torch.stack(torch.meshgrid([torch.arange(k_size[0]), torch.arange(k_size[1])])).flatten(1)
|
||||
relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0) # Wh*Ww, Wh*Ww, 2
|
||||
_, relative_position_index = torch.unique(relative_coords.view(-1, 2), return_inverse=True, dim=0)
|
||||
|
||||
if class_token:
|
||||
num_relative_distance = (2 * win_size[0] - 1) * (2 * win_size[1] - 1) + 3
|
||||
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
# handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias
|
||||
# NOTE not intended or tested with MLP log-coords
|
||||
max_size = (max(q_size[0], k_size[0]), max(q_size[1], k_size[1]))
|
||||
num_relative_distance = (2 * max_size[0] - 1) * (2 * max_size[1] - 1) + 3
|
||||
relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0])
|
||||
relative_position_index[0, 0:] = num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = num_relative_distance - 2
|
||||
relative_position_index[0, 0] = num_relative_distance - 1
|
||||
else:
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
return relative_position_index
|
||||
|
||||
return relative_position_index.contiguous()
|
||||
|
||||
|
||||
def gen_relative_log_coords(
|
||||
win_size: Tuple[int, int],
|
||||
pretrained_win_size: Tuple[int, int] = (0, 0),
|
||||
mode='swin'
|
||||
mode='swin',
|
||||
):
|
||||
# as per official swin-v2 impl, supporting timm swin-v2-cr coords as well
|
||||
assert mode in ('swin', 'cr', 'rw')
|
||||
# as per official swin-v2 impl, supporting timm specific 'cr' and 'rw' log coords as well
|
||||
relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0], dtype=torch.float32)
|
||||
relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1], dtype=torch.float32)
|
||||
relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
|
||||
@ -100,12 +116,22 @@ def gen_relative_log_coords(
|
||||
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
|
||||
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
|
||||
relative_coords_table *= 8 # normalize to -8, 8
|
||||
scale = math.log2(8)
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
1.0 + relative_coords_table.abs()) / math.log2(8)
|
||||
else:
|
||||
# FIXME we should support a form of normalization (to -1/1) for this mode?
|
||||
scale = math.log2(math.e)
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
1.0 + relative_coords_table.abs()) / scale
|
||||
if mode == 'rw':
|
||||
# cr w/ window size normalization -> [-1,1] log coords
|
||||
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
|
||||
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
|
||||
relative_coords_table *= 8 # scale to -8, 8
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
1.0 + relative_coords_table.abs())
|
||||
relative_coords_table /= math.log2(9) # -> [-1, 1]
|
||||
else:
|
||||
# mode == 'cr'
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log(
|
||||
1.0 + relative_coords_table.abs())
|
||||
|
||||
return relative_coords_table
|
||||
|
||||
|
||||
@ -115,19 +141,29 @@ class RelPosMlp(nn.Module):
|
||||
window_size,
|
||||
num_heads=8,
|
||||
hidden_dim=128,
|
||||
class_token=False,
|
||||
prefix_tokens=0,
|
||||
mode='cr',
|
||||
pretrained_window_size=(0, 0)
|
||||
):
|
||||
super().__init__()
|
||||
self.window_size = window_size
|
||||
self.window_area = self.window_size[0] * self.window_size[1]
|
||||
self.class_token = 1 if class_token else 0
|
||||
self.prefix_tokens = prefix_tokens
|
||||
self.num_heads = num_heads
|
||||
self.bias_shape = (self.window_area,) * 2 + (num_heads,)
|
||||
self.apply_sigmoid = mode == 'swin'
|
||||
if mode == 'swin':
|
||||
self.bias_act = nn.Sigmoid()
|
||||
self.bias_gain = 16
|
||||
mlp_bias = (True, False)
|
||||
elif mode == 'rw':
|
||||
self.bias_act = nn.Tanh()
|
||||
self.bias_gain = 4
|
||||
mlp_bias = True
|
||||
else:
|
||||
self.bias_act = nn.Identity()
|
||||
self.bias_gain = None
|
||||
mlp_bias = True
|
||||
|
||||
mlp_bias = (True, False) if mode == 'swin' else True
|
||||
self.mlp = Mlp(
|
||||
2, # x, y
|
||||
hidden_features=hidden_dim,
|
||||
@ -155,10 +191,11 @@ class RelPosMlp(nn.Module):
|
||||
self.relative_position_index.view(-1)] # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.view(self.bias_shape)
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1)
|
||||
if self.apply_sigmoid:
|
||||
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||
if self.class_token:
|
||||
relative_position_bias = F.pad(relative_position_bias, [self.class_token, 0, self.class_token, 0])
|
||||
relative_position_bias = self.bias_act(relative_position_bias)
|
||||
if self.bias_gain is not None:
|
||||
relative_position_bias = self.bias_gain * relative_position_bias
|
||||
if self.prefix_tokens:
|
||||
relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0])
|
||||
return relative_position_bias.unsqueeze(0).contiguous()
|
||||
|
||||
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
|
||||
@ -167,18 +204,18 @@ class RelPosMlp(nn.Module):
|
||||
|
||||
class RelPosBias(nn.Module):
|
||||
|
||||
def __init__(self, window_size, num_heads, class_token=False):
|
||||
def __init__(self, window_size, num_heads, prefix_tokens=0):
|
||||
super().__init__()
|
||||
assert prefix_tokens <= 1
|
||||
self.window_size = window_size
|
||||
self.window_area = window_size[0] * window_size[1]
|
||||
self.class_token = 1 if class_token else 0
|
||||
self.bias_shape = (self.window_area + self.class_token,) * 2 + (num_heads,)
|
||||
self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,)
|
||||
|
||||
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * self.class_token
|
||||
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens
|
||||
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
|
||||
self.register_buffer(
|
||||
"relative_position_index",
|
||||
gen_relative_position_index(self.window_size, class_token=self.class_token),
|
||||
gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
@ -306,11 +343,32 @@ class VisionTransformerRelPos(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
|
||||
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=1e-6,
|
||||
class_token=False, fc_norm=False, rel_pos_type='mlp', shared_rel_pos=False, rel_pos_dim=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='skip',
|
||||
embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=RelPosBlock):
|
||||
self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
global_pool='avg',
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=True,
|
||||
init_values=1e-6,
|
||||
class_token=False,
|
||||
fc_norm=False,
|
||||
rel_pos_type='mlp',
|
||||
rel_pos_dim=None,
|
||||
shared_rel_pos=False,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
weight_init='skip',
|
||||
embed_layer=PatchEmbed,
|
||||
norm_layer=None,
|
||||
act_layer=None,
|
||||
block_fn=RelPosBlock
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
img_size (int, tuple): input image size
|
||||
@ -345,19 +403,22 @@ class VisionTransformerRelPos(nn.Module):
|
||||
self.num_classes = num_classes
|
||||
self.global_pool = global_pool
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
self.num_tokens = 1 if class_token else 0
|
||||
self.num_prefix_tokens = 1 if class_token else 0
|
||||
self.grad_checkpointing = False
|
||||
|
||||
self.patch_embed = embed_layer(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
feat_size = self.patch_embed.grid_size
|
||||
|
||||
rel_pos_args = dict(window_size=feat_size, class_token=class_token)
|
||||
rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens)
|
||||
if rel_pos_type.startswith('mlp'):
|
||||
if rel_pos_dim:
|
||||
rel_pos_args['hidden_dim'] = rel_pos_dim
|
||||
# FIXME experimenting with different relpos log coord configs
|
||||
if 'swin' in rel_pos_type:
|
||||
rel_pos_args['mode'] = 'swin'
|
||||
elif 'rw' in rel_pos_type:
|
||||
rel_pos_args['mode'] = 'rw'
|
||||
rel_pos_cls = partial(RelPosMlp, **rel_pos_args)
|
||||
else:
|
||||
rel_pos_cls = partial(RelPosBias, **rel_pos_args)
|
||||
@ -367,7 +428,7 @@ class VisionTransformerRelPos(nn.Module):
|
||||
# NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both...
|
||||
rel_pos_cls = None
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) if self.num_tokens else None
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList([
|
||||
@ -434,7 +495,7 @@ class VisionTransformerRelPos(nn.Module):
|
||||
|
||||
def forward_head(self, x, pre_logits: bool = False):
|
||||
if self.global_pool:
|
||||
x = x[:, self.num_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
||||
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
||||
x = self.fc_norm(x)
|
||||
return x if pre_logits else self.head(x)
|
||||
|
||||
@ -502,6 +563,41 @@ def vit_relpos_base_patch16_224(pretrained=False, **kwargs):
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_srelpos_small_patch16_224(pretrained=False, **kwargs):
|
||||
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
|
||||
"""
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False,
|
||||
rel_pos_dim=384, shared_rel_pos=True, **kwargs)
|
||||
model = _create_vision_transformer_relpos('vit_srelpos_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs):
|
||||
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
|
||||
"""
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
|
||||
rel_pos_dim=512, shared_rel_pos=True, **kwargs)
|
||||
model = _create_vision_transformer_relpos(
|
||||
'vit_srelpos_medium_patch16_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs):
|
||||
""" ViT-Base (ViT-M/16) w/ relative log-coord position, class token present
|
||||
"""
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
|
||||
rel_pos_dim=256, class_token=True, global_pool='token', **kwargs)
|
||||
model = _create_vision_transformer_relpos(
|
||||
'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs):
|
||||
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
|
||||
@ -514,14 +610,14 @@ def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs):
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_relpos_base_patch16_gapcls_224(pretrained=False, **kwargs):
|
||||
def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs):
|
||||
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
|
||||
NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled
|
||||
Leaving here for comparisons w/ a future re-train as it performs quite well.
|
||||
"""
|
||||
model_kwargs = dict(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True, **kwargs)
|
||||
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_gapcls_224', pretrained=pretrained, **model_kwargs)
|
||||
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **model_kwargs)
|
||||
return model
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user