mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add 21k weight urls to vision_transformer. Cleanup feature_info for preact ResNetV2 (BiT) models
This commit is contained in:
parent
231d04e91a
commit
ce69de70d3
@ -8,7 +8,9 @@ Additionally, supports non pre-activation bottleneck for use as a backbone for V
|
||||
extra padding support to allow porting of official Hybrid ResNet pretrained weights from
|
||||
https://github.com/google-research/vision_transformer
|
||||
|
||||
Thanks to the Google team for the above two repositories and associated papers.
|
||||
Thanks to the Google team for the above two repositories and associated papers:
|
||||
* Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370
|
||||
* An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929
|
||||
|
||||
Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020.
|
||||
"""
|
||||
@ -86,19 +88,19 @@ default_cfgs = {
|
||||
num_classes=21843),
|
||||
|
||||
|
||||
# trained on imagenet-1k
|
||||
'resnetv2_50x1_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R50x1-ILSVRC2012.npz'),
|
||||
'resnetv2_50x3_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R50x3-ILSVRC2012.npz'),
|
||||
'resnetv2_101x1_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R101x3-ILSVRC2012.npz'),
|
||||
'resnetv2_101x3_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R101x3-ILSVRC2012.npz'),
|
||||
'resnetv2_152x2_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R152x2-ILSVRC2012.npz'),
|
||||
'resnetv2_152x4_bits': _cfg(
|
||||
url='https://storage.googleapis.com/bit_models/BiT-S-R152x4-ILSVRC2012.npz'),
|
||||
# trained on imagenet-1k, NOTE not overly interesting set of weights, leaving disabled for now
|
||||
# 'resnetv2_50x1_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R50x1.npz'),
|
||||
# 'resnetv2_50x3_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R50x3.npz'),
|
||||
# 'resnetv2_101x1_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R101x3.npz'),
|
||||
# 'resnetv2_101x3_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R101x3.npz'),
|
||||
# 'resnetv2_152x2_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R152x2.npz'),
|
||||
# 'resnetv2_152x4_bits': _cfg(
|
||||
# url='https://storage.googleapis.com/bit_models/BiT-S-R152x4.npz'),
|
||||
}
|
||||
|
||||
|
||||
@ -358,8 +360,8 @@ class ResNetV2(nn.Module):
|
||||
self.feature_info = []
|
||||
stem_chs = make_div(stem_chs * wf)
|
||||
self.stem = create_stem(in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer)
|
||||
if not preact:
|
||||
self.feature_info.append(dict(num_chs=stem_chs, reduction=4, module='stem'))
|
||||
# NOTE no, reduction 2 feature if preact
|
||||
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module='' if preact else 'stem.norm'))
|
||||
|
||||
prev_chs = stem_chs
|
||||
curr_stride = 4
|
||||
@ -372,21 +374,19 @@ class ResNetV2(nn.Module):
|
||||
if curr_stride >= output_stride:
|
||||
dilation *= stride
|
||||
stride = 1
|
||||
if preact:
|
||||
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}.norm1')]
|
||||
stage = ResNetStage(
|
||||
prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down,
|
||||
act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_fn=block_fn)
|
||||
prev_chs = out_chs
|
||||
curr_stride *= stride
|
||||
if not preact:
|
||||
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')]
|
||||
feat_name = f'stages.{stage_idx}'
|
||||
if preact:
|
||||
feat_name = f'stages.{stage_idx + 1}.blocks.0.norm1' if (stage_idx + 1) != len(channels) else 'norm'
|
||||
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=feat_name)]
|
||||
self.stages.add_module(str(stage_idx), stage)
|
||||
|
||||
self.num_features = prev_chs
|
||||
self.norm = norm_layer(self.num_features) if preact else nn.Identity()
|
||||
if preact:
|
||||
self.feature_info += [dict(num_chs=self.num_features, reduction=curr_stride, module=f'norm')]
|
||||
self.head = ClassifierHead(
|
||||
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True)
|
||||
|
||||
@ -446,9 +446,15 @@ class ResNetV2(nn.Module):
|
||||
|
||||
def _create_resnetv2(variant, pretrained=False, **kwargs):
|
||||
# FIXME feature map extraction is not setup properly for pre-activation mode right now
|
||||
preact = kwargs.get('preact', True)
|
||||
feature_cfg = dict(flatten_sequential=True)
|
||||
if preact:
|
||||
feature_cfg['feature_cls'] = 'hook'
|
||||
feature_cfg['out_indices'] = (1, 2, 3, 4) # no stride 2, 0 level feat for preact
|
||||
|
||||
return build_model_with_cfg(
|
||||
ResNetV2, variant, pretrained, default_cfg=default_cfgs[variant], pretrained_custom_load=True,
|
||||
feature_cfg=dict(flatten_sequential=True), **kwargs)
|
||||
feature_cfg=feature_cfg, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
@ -496,83 +502,85 @@ def resnetv2_152x4_bitm(pretrained=False, **kwargs):
|
||||
@register_model
|
||||
def resnetv2_50x1_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_50x1_bitm', pretrained=pretrained,
|
||||
'resnetv2_50x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 4, 6, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_50x3_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_50x3_bitm', pretrained=pretrained,
|
||||
'resnetv2_50x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 4, 6, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_101x1_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_101x1_bitm', pretrained=pretrained,
|
||||
'resnetv2_101x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 4, 23, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_101x3_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_101x3_bitm', pretrained=pretrained,
|
||||
'resnetv2_101x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 4, 23, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_152x2_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_152x2_bitm', pretrained=pretrained,
|
||||
'resnetv2_152x2_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 8, 36, 3], width_factor=2, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_152x4_bitm_in21k(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_152x4_bitm', pretrained=pretrained,
|
||||
'resnetv2_152x4_bitm_in21k', pretrained=pretrained, num_classes=kwargs.get('num_classes', 21843),
|
||||
layers=[3, 8, 36, 3], width_factor=4, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_50x1_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_50x1_bits', pretrained=pretrained,
|
||||
layers=[3, 4, 6, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_50x3_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_50x3_bits', pretrained=pretrained,
|
||||
layers=[3, 4, 6, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_101x1_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_101x1_bits', pretrained=pretrained,
|
||||
layers=[3, 4, 23, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_101x3_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_101x3_bits', pretrained=pretrained,
|
||||
layers=[3, 4, 23, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_152x2_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_152x2_bits', pretrained=pretrained,
|
||||
layers=[3, 8, 36, 3], width_factor=2, stem_type='fixed', **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def resnetv2_152x4_bits(pretrained=False, **kwargs):
|
||||
return _create_resnetv2(
|
||||
'resnetv2_152x4_bits', pretrained=pretrained,
|
||||
layers=[3, 8, 36, 3], width_factor=4, stem_type='fixed', **kwargs)
|
||||
# NOTE the 'S' versions of the model weights arent as interesting as original 21k or transfer to 1K M.
|
||||
|
||||
# @register_model
|
||||
# def resnetv2_50x1_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_50x1_bits', pretrained=pretrained,
|
||||
# layers=[3, 4, 6, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def resnetv2_50x3_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_50x3_bits', pretrained=pretrained,
|
||||
# layers=[3, 4, 6, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def resnetv2_101x1_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_101x1_bits', pretrained=pretrained,
|
||||
# layers=[3, 4, 23, 3], width_factor=1, stem_type='fixed', **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def resnetv2_101x3_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_101x3_bits', pretrained=pretrained,
|
||||
# layers=[3, 4, 23, 3], width_factor=3, stem_type='fixed', **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def resnetv2_152x2_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_152x2_bits', pretrained=pretrained,
|
||||
# layers=[3, 8, 36, 3], width_factor=2, stem_type='fixed', **kwargs)
|
||||
#
|
||||
#
|
||||
# @register_model
|
||||
# def resnetv2_152x4_bits(pretrained=False, **kwargs):
|
||||
# return _create_resnetv2(
|
||||
# 'resnetv2_152x4_bits', pretrained=pretrained,
|
||||
# layers=[3, 8, 36, 3], width_factor=4, stem_type='fixed', **kwargs)
|
||||
#
|
||||
|
@ -79,23 +79,27 @@ default_cfgs = {
|
||||
|
||||
# patch models, imagenet21k (weights ported from official JAX impl)
|
||||
'vit_base_patch16_224_in21k': _cfg(
|
||||
url='',
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth',
|
||||
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
'vit_base_patch32_224_in21k': _cfg(
|
||||
url='',
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth',
|
||||
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
'vit_large_patch16_224_in21k': _cfg(
|
||||
url='',
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth',
|
||||
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
'vit_large_patch32_224_in21k': _cfg(
|
||||
url='',
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
|
||||
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
'vit_huge_patch14_224_in21k': _cfg(
|
||||
url='',
|
||||
url='', # FIXME I have weights for this but > 2GB limit for github release binaries
|
||||
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||
|
||||
# hybrid models (weights ported from official JAX impl)
|
||||
'vit_base_resnet50_224_in21k': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
|
||||
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9),
|
||||
'vit_base_resnet50_384': _cfg(
|
||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
|
||||
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||
|
||||
# hybrid models (my experiments)
|
||||
@ -269,6 +273,7 @@ class VisionTransformer(nn.Module):
|
||||
|
||||
# Representation layer
|
||||
if representation_size:
|
||||
self.num_features = representation_size
|
||||
self.pre_logits = nn.Sequential(OrderedDict([
|
||||
('fc', nn.Linear(embed_dim, representation_size)),
|
||||
('act', nn.Tanh())
|
||||
@ -315,12 +320,12 @@ class VisionTransformer(nn.Module):
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.norm(x)
|
||||
return x[:, 0]
|
||||
x = self.norm(x)[:, 0]
|
||||
x = self.pre_logits(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.pre_logits(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
@ -407,7 +412,7 @@ def vit_large_patch16_224(pretrained=False, **kwargs):
|
||||
@register_model
|
||||
def vit_large_patch32_224(pretrained=False, **kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=224, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
img_size=224, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch32_224']
|
||||
if pretrained:
|
||||
@ -418,7 +423,7 @@ def vit_large_patch32_224(pretrained=False, **kwargs):
|
||||
@register_model
|
||||
def vit_large_patch16_384(pretrained=False, **kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch16_384']
|
||||
if pretrained:
|
||||
@ -426,22 +431,12 @@ def vit_large_patch16_384(pretrained=False, **kwargs):
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_large_patch32_384(pretrained=False, **kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch32_384']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
model = VisionTransformer(
|
||||
patch_size=16, num_classes=21843, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
patch_size=16, num_classes=num_classes, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_base_patch16_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(
|
||||
@ -451,9 +446,10 @@ def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
model = VisionTransformer(
|
||||
img_size=224, num_classes=21843, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
img_size=224, num_classes=num_classes, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
qkv_bias=True, representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_base_patch32_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
@ -462,9 +458,10 @@ def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
model = VisionTransformer(
|
||||
patch_size=16, num_classes=21843, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
patch_size=16, num_classes=num_classes, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
representation_size=1024, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch16_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
@ -473,9 +470,10 @@ def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
model = VisionTransformer(
|
||||
img_size=224, num_classes=21843, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
img_size=224, num_classes=num_classes, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4,
|
||||
qkv_bias=True, representation_size=1024, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_large_patch32_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
@ -484,15 +482,31 @@ def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
||||
|
||||
@register_model
|
||||
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
model = VisionTransformer(
|
||||
img_size=224, patch_size=14, num_classes=21843, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4,
|
||||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
img_size=224, patch_size=14, num_classes=num_classes, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4,
|
||||
qkv_bias=True, representation_size=1280, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_huge_patch14_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
|
||||
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
||||
num_classes = kwargs.get('num_classes', 21843)
|
||||
backbone = ResNetV2(
|
||||
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
||||
model = VisionTransformer(
|
||||
img_size=224, num_classes=num_classes, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
hybrid_backbone=backbone, representation_size=768, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||
model.default_cfg = default_cfgs['vit_base_resnet50_224_in21k']
|
||||
if pretrained:
|
||||
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def vit_base_resnet50_384(pretrained=False, **kwargs):
|
||||
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
||||
|
@ -60,7 +60,7 @@ parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD'
|
||||
help='Override std deviation of of dataset')
|
||||
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
||||
help='Image resize interpolation type (overrides model)')
|
||||
parser.add_argument('--num-classes', type=int, default=1000,
|
||||
parser.add_argument('--num-classes', type=int, default=None,
|
||||
help='Number classes in dataset')
|
||||
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
|
||||
help='path to class to idx mapping file (default: "")')
|
||||
|
Loading…
x
Reference in New Issue
Block a user