mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Update benchmark and validate scripts to output results in JSON with a fixed delimiter for use in multi-process launcher
This commit is contained in:
parent
1331c145a3
commit
cf4334391e
28
benchmark.py
28
benchmark.py
@ -473,6 +473,7 @@ def decay_batch_exp(batch_size, factor=0.5, divisor=16):
|
||||
def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs):
|
||||
batch_size = initial_batch_size
|
||||
results = dict()
|
||||
error_str = 'Unknown'
|
||||
while batch_size >= 1:
|
||||
torch.cuda.empty_cache()
|
||||
try:
|
||||
@ -480,13 +481,13 @@ def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs):
|
||||
results = bench.run()
|
||||
return results
|
||||
except RuntimeError as e:
|
||||
e_str = str(e)
|
||||
print(e_str)
|
||||
if 'channels_last' in e_str:
|
||||
print(f'Error: {model_name} not supported in channels_last, skipping.')
|
||||
error_str = str(e)
|
||||
if 'channels_last' in error_str:
|
||||
_logger.error(f'{model_name} not supported in channels_last, skipping.')
|
||||
break
|
||||
print(f'Error: "{e_str}" while running benchmark. Reducing batch size to {batch_size} for retry.')
|
||||
_logger.warning(f'"{error_str}" while running benchmark. Reducing batch size to {batch_size} for retry.')
|
||||
batch_size = decay_batch_exp(batch_size)
|
||||
results['error'] = error_str
|
||||
return results
|
||||
|
||||
|
||||
@ -528,13 +529,14 @@ def benchmark(args):
|
||||
model_results = OrderedDict(model=model)
|
||||
for prefix, bench_fn in zip(prefixes, bench_fns):
|
||||
run_results = _try_run(model, bench_fn, initial_batch_size=batch_size, bench_kwargs=bench_kwargs)
|
||||
if prefix:
|
||||
if prefix and 'error' not in run_results:
|
||||
run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()}
|
||||
model_results.update(run_results)
|
||||
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
|
||||
model_results.setdefault('param_count', param_count)
|
||||
model_results.pop('train_param_count', 0)
|
||||
return model_results if model_results['param_count'] else dict()
|
||||
if 'error' not in model_results:
|
||||
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
|
||||
model_results.setdefault('param_count', param_count)
|
||||
model_results.pop('train_param_count', 0)
|
||||
return model_results
|
||||
|
||||
|
||||
def main():
|
||||
@ -578,13 +580,15 @@ def main():
|
||||
sort_key = 'train_samples_per_sec'
|
||||
elif 'profile' in args.bench:
|
||||
sort_key = 'infer_gmacs'
|
||||
results = filter(lambda x: sort_key in x, results)
|
||||
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
|
||||
if len(results):
|
||||
write_results(results_file, results)
|
||||
else:
|
||||
results = benchmark(args)
|
||||
json_str = json.dumps(results, indent=4)
|
||||
print(json_str)
|
||||
|
||||
# output results in JSON to stdout w/ delimiter for runner script
|
||||
print(f'--result\n{json.dumps(results, indent=4)}')
|
||||
|
||||
|
||||
def write_results(results_file, results):
|
||||
|
52
validate.py
52
validate.py
@ -11,6 +11,7 @@ import argparse
|
||||
import os
|
||||
import csv
|
||||
import glob
|
||||
import json
|
||||
import time
|
||||
import logging
|
||||
import torch
|
||||
@ -263,6 +264,7 @@ def validate(args):
|
||||
else:
|
||||
top1a, top5a = top1.avg, top5.avg
|
||||
results = OrderedDict(
|
||||
model=args.model,
|
||||
top1=round(top1a, 4), top1_err=round(100 - top1a, 4),
|
||||
top5=round(top5a, 4), top5_err=round(100 - top5a, 4),
|
||||
param_count=round(param_count / 1e6, 2),
|
||||
@ -276,6 +278,27 @@ def validate(args):
|
||||
return results
|
||||
|
||||
|
||||
def _try_run(args, initial_batch_size):
|
||||
batch_size = initial_batch_size
|
||||
results = OrderedDict()
|
||||
error_str = 'Unknown'
|
||||
while batch_size >= 1:
|
||||
args.batch_size = batch_size
|
||||
torch.cuda.empty_cache()
|
||||
try:
|
||||
results = validate(args)
|
||||
return results
|
||||
except RuntimeError as e:
|
||||
error_str = str(e)
|
||||
if 'channels_last' in error_str:
|
||||
break
|
||||
_logger.warning(f'"{error_str}" while running validation. Reducing batch size to {batch_size} for retry.')
|
||||
batch_size = batch_size // 2
|
||||
results['error'] = error_str
|
||||
_logger.error(f'{args.model} failed to validate ({error_str}).')
|
||||
return results
|
||||
|
||||
|
||||
def main():
|
||||
setup_default_logging()
|
||||
args = parser.parse_args()
|
||||
@ -308,36 +331,25 @@ def main():
|
||||
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
|
||||
results = []
|
||||
try:
|
||||
start_batch_size = args.batch_size
|
||||
initial_batch_size = args.batch_size
|
||||
for m, c in model_cfgs:
|
||||
batch_size = start_batch_size
|
||||
args.model = m
|
||||
args.checkpoint = c
|
||||
result = OrderedDict(model=args.model)
|
||||
r = {}
|
||||
while not r and batch_size >= args.num_gpu:
|
||||
torch.cuda.empty_cache()
|
||||
try:
|
||||
args.batch_size = batch_size
|
||||
print('Validating with batch size: %d' % args.batch_size)
|
||||
r = validate(args)
|
||||
except RuntimeError as e:
|
||||
if batch_size <= args.num_gpu:
|
||||
print("Validation failed with no ability to reduce batch size. Exiting.")
|
||||
raise e
|
||||
batch_size = max(batch_size // 2, args.num_gpu)
|
||||
print("Validation failed, reducing batch size by 50%")
|
||||
result.update(r)
|
||||
r = _try_run(args, initial_batch_size)
|
||||
if 'error' in r:
|
||||
continue
|
||||
if args.checkpoint:
|
||||
result['checkpoint'] = args.checkpoint
|
||||
results.append(result)
|
||||
r['checkpoint'] = args.checkpoint
|
||||
results.append(r)
|
||||
except KeyboardInterrupt as e:
|
||||
pass
|
||||
results = sorted(results, key=lambda x: x['top1'], reverse=True)
|
||||
if len(results):
|
||||
write_results(results_file, results)
|
||||
else:
|
||||
validate(args)
|
||||
results = validate(args)
|
||||
# output results in JSON to stdout w/ delimiter for runner script
|
||||
print(f'--result\n{json.dumps(results, indent=4)}')
|
||||
|
||||
|
||||
def write_results(results_file, results):
|
||||
|
Loading…
x
Reference in New Issue
Block a user