diff --git a/tests/test_models.py b/tests/test_models.py index 3013d0b9..fa148133 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -15,7 +15,8 @@ if hasattr(torch._C, '_jit_set_profiling_executor'): torch._C._jit_set_profiling_mode(False) # transformer models don't support many of the spatial / feature based model functionalities -NON_STD_FILTERS = ['vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*'] +NON_STD_FILTERS = [ + 'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', 'convit_*'] NUM_NON_STD = len(NON_STD_FILTERS) # exclude models that cause specific test failures diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 293b459d..0488094c 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -2,6 +2,7 @@ from .byoanet import * from .byobnet import * from .cait import * from .coat import * +from .convit import * from .cspnet import * from .densenet import * from .dla import * diff --git a/timm/models/convit.py b/timm/models/convit.py new file mode 100644 index 00000000..f6ae3ec1 --- /dev/null +++ b/timm/models/convit.py @@ -0,0 +1,350 @@ +""" ConViT Model + +@article{d2021convit, + title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases}, + author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent}, + journal={arXiv preprint arXiv:2103.10697}, + year={2021} +} + +Paper link: https://arxiv.org/abs/2103.10697 +Original code: https://github.com/facebookresearch/convit, original copyright below +""" +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. +# +# This source code is licensed under the CC-by-NC license found in the +# LICENSE file in the root directory of this source tree. +# +'''These modules are adapted from those of timm, see +https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +''' + +import torch +import torch.nn as nn +from functools import partial +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .helpers import build_model_with_cfg +from .layers import DropPath, to_2tuple, trunc_normal_, PatchEmbed, Mlp +from .registry import register_model +from .vision_transformer_hybrid import HybridEmbed + +import torch +import torch.nn as nn + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = { + # ConViT + 'convit_tiny': _cfg( + url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"), + 'convit_small': _cfg( + url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"), + 'convit_base': _cfg( + url="https://dl.fbaipublicfiles.com/convit/convit_base.pth") +} + + +class GPSA(nn.Module): + def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., + locality_strength=1.): + super().__init__() + self.num_heads = num_heads + self.dim = dim + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + self.locality_strength = locality_strength + + self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.pos_proj = nn.Linear(3, num_heads) + self.proj_drop = nn.Dropout(proj_drop) + self.locality_strength = locality_strength + self.gating_param = nn.Parameter(torch.ones(self.num_heads)) + self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None + + def forward(self, x): + B, N, C = x.shape + if self.rel_indices is None or self.rel_indices.shape[1] != N: + self.rel_indices = self.get_rel_indices(N) + attn = self.get_attention(x) + v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def get_attention(self, x): + B, N, C = x.shape + qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k = qk[0], qk[1] + pos_score = self.rel_indices.expand(B, -1, -1, -1) + pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2) + patch_score = (q @ k.transpose(-2, -1)) * self.scale + patch_score = patch_score.softmax(dim=-1) + pos_score = pos_score.softmax(dim=-1) + + gating = self.gating_param.view(1, -1, 1, 1) + attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score + attn /= attn.sum(dim=-1).unsqueeze(-1) + attn = self.attn_drop(attn) + return attn + + def get_attention_map(self, x, return_map=False): + attn_map = self.get_attention(x).mean(0) # average over batch + distances = self.rel_indices.squeeze()[:, :, -1] ** .5 + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0) + if return_map: + return dist, attn_map + else: + return dist + + def local_init(self): + self.v.weight.data.copy_(torch.eye(self.dim)) + locality_distance = 1 # max(1,1/locality_strength**.5) + + kernel_size = int(self.num_heads ** .5) + center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2 + for h1 in range(kernel_size): + for h2 in range(kernel_size): + position = h1 + kernel_size * h2 + self.pos_proj.weight.data[position, 2] = -1 + self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance + self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance + self.pos_proj.weight.data *= self.locality_strength + + def get_rel_indices(self, num_patches: int) -> torch.Tensor: + img_size = int(num_patches ** .5) + rel_indices = torch.zeros(1, num_patches, num_patches, 3) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + rel_indices[:, :, :, 2] = indd.unsqueeze(0) + rel_indices[:, :, :, 1] = indy.unsqueeze(0) + rel_indices[:, :, :, 0] = indx.unsqueeze(0) + device = self.qk.weight.device + return rel_indices.to(device) + + +class MHSA(nn.Module): + def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def get_attention_map(self, x, return_map=False): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] + attn_map = (q @ k.transpose(-2, -1)) * self.scale + attn_map = attn_map.softmax(dim=-1).mean(0) + + img_size = int(N ** .5) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + distances = indd ** .5 + distances = distances.to('cuda') + + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N + if return_map: + return dist, attn_map + else: + return dist + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs): + super().__init__() + self.norm1 = norm_layer(dim) + self.use_gpsa = use_gpsa + if self.use_gpsa: + self.attn = GPSA( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, + proj_drop=drop, **kwargs) + else: + self.attn = MHSA( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, + proj_drop=drop, **kwargs) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class ConViT(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None, + local_up_to_layer=3, locality_strength=1., use_pos_embed=True): + super().__init__() + embed_dim *= num_heads + self.num_classes = num_classes + self.local_up_to_layer = local_up_to_layer + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + self.locality_strength = locality_strength + self.use_pos_embed = use_pos_embed + + if hybrid_backbone is not None: + self.patch_embed = HybridEmbed( + hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) + else: + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + self.num_patches = num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_drop = nn.Dropout(p=drop_rate) + + if self.use_pos_embed: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.pos_embed, std=.02) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + use_gpsa=True, + locality_strength=locality_strength) + if i < local_up_to_layer else + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + use_gpsa=False) + for i in range(depth)]) + self.norm = norm_layer(embed_dim) + + # Classifier head + self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + for n, m in self.named_modules(): + if hasattr(m, 'local_init'): + m.local_init() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def get_classifier(self): + return self.head + + def reset_classifier(self, num_classes, global_pool=''): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + B = x.shape[0] + x = self.patch_embed(x) + + cls_tokens = self.cls_token.expand(B, -1, -1) + + if self.use_pos_embed: + x = x + self.pos_embed + x = self.pos_drop(x) + + for u, blk in enumerate(self.blocks): + if u == self.local_up_to_layer: + x = torch.cat((cls_tokens, x), dim=1) + x = blk(x) + + x = self.norm(x) + return x[:, 0] + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x + + +def _create_convit(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + ConViT, variant, pretrained, + default_cfg=default_cfgs[variant], + **kwargs) + + +@register_model +def convit_tiny(pretrained=False, **kwargs): + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, + num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + model = _create_convit(variant='convit_tiny', pretrained=pretrained, **model_args) + return model + + +@register_model +def convit_small(pretrained=False, **kwargs): + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, + num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + model = _create_convit(variant='convit_small', pretrained=pretrained, **model_args) + return model + + +@register_model +def convit_base(pretrained=False, **kwargs): + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, + num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + model = _create_convit(variant='convit_base', pretrained=pretrained, **model_args) + return model