Add forward_intermediates() to efficientnet / mobilenetv3 based models as an exercise.

This commit is contained in:
Ross Wightman 2024-05-02 14:19:16 -07:00
parent c22efb9765
commit d6da4fb01e
4 changed files with 182 additions and 12 deletions

View File

@ -49,8 +49,9 @@ if hasattr(torch._C, '_jit_set_profiling_executor'):
# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
FEAT_INTER_FILTERS = [
'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*',
'cait_*', 'xcit_*', 'volo_*', 'swin*', 'max*vit_*', 'coatne*t_*'
'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos',
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3'
]
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
@ -388,7 +389,7 @@ def test_model_forward_features(model_name, batch_size):
@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates_features(model_name, batch_size):
"""Run a single forward pass with each model in feature extraction mode"""
@ -419,7 +420,7 @@ def test_model_forward_intermediates_features(model_name, batch_size):
@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates(model_name, batch_size):
"""Run a single forward pass with each model in feature extraction mode"""

View File

@ -184,7 +184,7 @@ def _expand_filter(filter: str):
def list_models(
filter: Union[str, List[str]] = '',
module: str = '',
module: Union[str, List[str]] = '',
pretrained: bool = False,
exclude_filters: Union[str, List[str]] = '',
name_matches_cfg: bool = False,
@ -217,7 +217,16 @@ def list_models(
# FIXME should this be default behaviour? or default to include_tags=True?
include_tags = pretrained
all_models: Set[str] = _module_to_models[module] if module else set(_model_entrypoints.keys())
if not module:
all_models: Set[str] = set(_model_entrypoints.keys())
else:
if isinstance(module, str):
all_models: Set[str] = _module_to_models[module]
else:
assert isinstance(module, Sequence)
all_models: Set[str] = set()
for m in module:
all_models.update(_module_to_models[m])
all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings
if include_tags:

View File

@ -36,7 +36,7 @@ the models and weights open source!
Hacked together by / Copyright 2019, Ross Wightman
"""
from functools import partial
from typing import List
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
@ -49,7 +49,7 @@ from ._builder import build_model_with_cfg, pretrained_cfg_for_features
from ._efficientnet_blocks import SqueezeExcite
from ._efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
from ._features import FeatureInfo, FeatureHooks
from ._features import FeatureInfo, FeatureHooks, feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
@ -118,6 +118,7 @@ class EfficientNet(nn.Module):
)
self.blocks = nn.Sequential(*builder(stem_size, block_args))
self.feature_info = builder.features
self.stage_ends = [f['stage'] for f in self.feature_info]
head_chs = builder.in_chs
# Head + Pooling
@ -158,6 +159,86 @@ class EfficientNet(nn.Module):
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_intermediates(
self,
x: torch.Tensor,
*,
indices: Union[int, List[int], Tuple[int]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
extra_blocks: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to compatible intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info
Returns:
"""
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
if stop_early:
assert intermediates_only, 'Must use intermediates_only for early stopping.'
intermediates = []
if extra_blocks:
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
else:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
# forward pass
feat_idx = 0 # stem is index 0
x = self.conv_stem(x)
x = self.bn1(x)
if feat_idx in take_indices:
intermediates.append(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index]
for blk in blocks:
feat_idx += 1
x = blk(x)
if feat_idx in take_indices:
intermediates.append(x)
if intermediates_only:
return intermediates
x = self.conv_head(x)
x = self.bn2(x)
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
extra_blocks: bool = False,
):
""" Prune layers not required for specified intermediates.
"""
if extra_blocks:
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
else:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0
if prune_norm or max_index < len(self.blocks):
self.conv_head = nn.Identity()
self.bn2 = nn.Identity()
if prune_head:
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x):
x = self.conv_stem(x)
x = self.bn1(x)
@ -272,7 +353,7 @@ def _create_effnet(variant, pretrained=False, **kwargs):
model_cls = EfficientNet
kwargs_filter = None
if kwargs.pop('features_only', False):
if 'feature_cfg' in kwargs:
if 'feature_cfg' in kwargs or 'feature_cls' in kwargs:
features_mode = 'cfg'
else:
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool')

View File

@ -7,7 +7,7 @@ Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
Hacked together by / Copyright 2019, Ross Wightman
"""
from functools import partial
from typing import Callable, List, Optional, Tuple
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
@ -20,7 +20,7 @@ from ._builder import build_model_with_cfg, pretrained_cfg_for_features
from ._efficientnet_blocks import SqueezeExcite
from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
from ._features import FeatureInfo, FeatureHooks
from ._features import FeatureInfo, FeatureHooks, feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
@ -109,6 +109,7 @@ class MobileNetV3(nn.Module):
)
self.blocks = nn.Sequential(*builder(stem_size, block_args))
self.feature_info = builder.features
self.stage_ends = [f['stage'] for f in self.feature_info]
head_chs = builder.in_chs
# Head + Pooling
@ -150,6 +151,84 @@ class MobileNetV3(nn.Module):
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
*,
indices: Union[int, List[int], Tuple[int]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
extra_blocks: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to compatible intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info
Returns:
"""
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
if stop_early:
assert intermediates_only, 'Must use intermediates_only for early stopping.'
intermediates = []
if extra_blocks:
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
else:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
print(take_indices, self.stage_ends)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
# forward pass
feat_idx = 0 # stem is index 0
x = self.conv_stem(x)
x = self.bn1(x)
if feat_idx in take_indices:
intermediates.append(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index]
for blk in blocks:
feat_idx += 1
x = blk(x)
if feat_idx in take_indices:
intermediates.append(x)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
extra_blocks: bool = False,
):
""" Prune layers not required for specified intermediates.
"""
if extra_blocks:
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
else:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0
if max_index < len(self.blocks):
self.conv_head = nn.Identity()
if prune_head:
self.conv_head = nn.Identity()
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv_stem(x)
x = self.bn1(x)
@ -288,7 +367,7 @@ def _create_mnv3(variant: str, pretrained: bool = False, **kwargs) -> MobileNetV
model_cls = MobileNetV3
kwargs_filter = None
if kwargs.pop('features_only', False):
if 'feature_cfg' in kwargs:
if 'feature_cfg' in kwargs or 'feature_cls' in kwargs:
features_mode = 'cfg'
else:
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')