mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add forward_intermediates() to efficientnet / mobilenetv3 based models as an exercise.
This commit is contained in:
parent
c22efb9765
commit
d6da4fb01e
@ -49,8 +49,9 @@ if hasattr(torch._C, '_jit_set_profiling_executor'):
|
|||||||
|
|
||||||
# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
|
# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
|
||||||
FEAT_INTER_FILTERS = [
|
FEAT_INTER_FILTERS = [
|
||||||
'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*',
|
'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos',
|
||||||
'cait_*', 'xcit_*', 'volo_*', 'swin*', 'max*vit_*', 'coatne*t_*'
|
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
|
||||||
|
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3'
|
||||||
]
|
]
|
||||||
|
|
||||||
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
|
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
|
||||||
@ -388,7 +389,7 @@ def test_model_forward_features(model_name, batch_size):
|
|||||||
|
|
||||||
@pytest.mark.features
|
@pytest.mark.features
|
||||||
@pytest.mark.timeout(120)
|
@pytest.mark.timeout(120)
|
||||||
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
|
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
|
||||||
@pytest.mark.parametrize('batch_size', [1])
|
@pytest.mark.parametrize('batch_size', [1])
|
||||||
def test_model_forward_intermediates_features(model_name, batch_size):
|
def test_model_forward_intermediates_features(model_name, batch_size):
|
||||||
"""Run a single forward pass with each model in feature extraction mode"""
|
"""Run a single forward pass with each model in feature extraction mode"""
|
||||||
@ -419,7 +420,7 @@ def test_model_forward_intermediates_features(model_name, batch_size):
|
|||||||
|
|
||||||
@pytest.mark.features
|
@pytest.mark.features
|
||||||
@pytest.mark.timeout(120)
|
@pytest.mark.timeout(120)
|
||||||
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
|
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
|
||||||
@pytest.mark.parametrize('batch_size', [1])
|
@pytest.mark.parametrize('batch_size', [1])
|
||||||
def test_model_forward_intermediates(model_name, batch_size):
|
def test_model_forward_intermediates(model_name, batch_size):
|
||||||
"""Run a single forward pass with each model in feature extraction mode"""
|
"""Run a single forward pass with each model in feature extraction mode"""
|
||||||
|
@ -184,7 +184,7 @@ def _expand_filter(filter: str):
|
|||||||
|
|
||||||
def list_models(
|
def list_models(
|
||||||
filter: Union[str, List[str]] = '',
|
filter: Union[str, List[str]] = '',
|
||||||
module: str = '',
|
module: Union[str, List[str]] = '',
|
||||||
pretrained: bool = False,
|
pretrained: bool = False,
|
||||||
exclude_filters: Union[str, List[str]] = '',
|
exclude_filters: Union[str, List[str]] = '',
|
||||||
name_matches_cfg: bool = False,
|
name_matches_cfg: bool = False,
|
||||||
@ -217,7 +217,16 @@ def list_models(
|
|||||||
# FIXME should this be default behaviour? or default to include_tags=True?
|
# FIXME should this be default behaviour? or default to include_tags=True?
|
||||||
include_tags = pretrained
|
include_tags = pretrained
|
||||||
|
|
||||||
all_models: Set[str] = _module_to_models[module] if module else set(_model_entrypoints.keys())
|
if not module:
|
||||||
|
all_models: Set[str] = set(_model_entrypoints.keys())
|
||||||
|
else:
|
||||||
|
if isinstance(module, str):
|
||||||
|
all_models: Set[str] = _module_to_models[module]
|
||||||
|
else:
|
||||||
|
assert isinstance(module, Sequence)
|
||||||
|
all_models: Set[str] = set()
|
||||||
|
for m in module:
|
||||||
|
all_models.update(_module_to_models[m])
|
||||||
all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings
|
all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings
|
||||||
|
|
||||||
if include_tags:
|
if include_tags:
|
||||||
|
@ -36,7 +36,7 @@ the models and weights open source!
|
|||||||
Hacked together by / Copyright 2019, Ross Wightman
|
Hacked together by / Copyright 2019, Ross Wightman
|
||||||
"""
|
"""
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import List
|
from typing import List, Optional, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -49,7 +49,7 @@ from ._builder import build_model_with_cfg, pretrained_cfg_for_features
|
|||||||
from ._efficientnet_blocks import SqueezeExcite
|
from ._efficientnet_blocks import SqueezeExcite
|
||||||
from ._efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
|
from ._efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
|
||||||
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
||||||
from ._features import FeatureInfo, FeatureHooks
|
from ._features import FeatureInfo, FeatureHooks, feature_take_indices
|
||||||
from ._manipulate import checkpoint_seq
|
from ._manipulate import checkpoint_seq
|
||||||
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
||||||
|
|
||||||
@ -118,6 +118,7 @@ class EfficientNet(nn.Module):
|
|||||||
)
|
)
|
||||||
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
||||||
self.feature_info = builder.features
|
self.feature_info = builder.features
|
||||||
|
self.stage_ends = [f['stage'] for f in self.feature_info]
|
||||||
head_chs = builder.in_chs
|
head_chs = builder.in_chs
|
||||||
|
|
||||||
# Head + Pooling
|
# Head + Pooling
|
||||||
@ -158,6 +159,86 @@ class EfficientNet(nn.Module):
|
|||||||
self.global_pool, self.classifier = create_classifier(
|
self.global_pool, self.classifier = create_classifier(
|
||||||
self.num_features, self.num_classes, pool_type=global_pool)
|
self.num_features, self.num_classes, pool_type=global_pool)
|
||||||
|
|
||||||
|
def forward_intermediates(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
*,
|
||||||
|
indices: Union[int, List[int], Tuple[int]] = None,
|
||||||
|
norm: bool = False,
|
||||||
|
stop_early: bool = False,
|
||||||
|
output_fmt: str = 'NCHW',
|
||||||
|
intermediates_only: bool = False,
|
||||||
|
extra_blocks: bool = False,
|
||||||
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||||
|
""" Forward features that returns intermediates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input image tensor
|
||||||
|
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||||
|
norm: Apply norm layer to compatible intermediates
|
||||||
|
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||||
|
output_fmt: Shape of intermediate feature outputs
|
||||||
|
intermediates_only: Only return intermediate features
|
||||||
|
extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||||
|
if stop_early:
|
||||||
|
assert intermediates_only, 'Must use intermediates_only for early stopping.'
|
||||||
|
intermediates = []
|
||||||
|
if extra_blocks:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
|
||||||
|
else:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
||||||
|
take_indices = [self.stage_ends[i] for i in take_indices]
|
||||||
|
max_index = self.stage_ends[max_index]
|
||||||
|
# forward pass
|
||||||
|
feat_idx = 0 # stem is index 0
|
||||||
|
x = self.conv_stem(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
if feat_idx in take_indices:
|
||||||
|
intermediates.append(x)
|
||||||
|
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||||
|
blocks = self.blocks
|
||||||
|
else:
|
||||||
|
blocks = self.blocks[:max_index]
|
||||||
|
for blk in blocks:
|
||||||
|
feat_idx += 1
|
||||||
|
x = blk(x)
|
||||||
|
if feat_idx in take_indices:
|
||||||
|
intermediates.append(x)
|
||||||
|
|
||||||
|
if intermediates_only:
|
||||||
|
return intermediates
|
||||||
|
|
||||||
|
x = self.conv_head(x)
|
||||||
|
x = self.bn2(x)
|
||||||
|
|
||||||
|
return x, intermediates
|
||||||
|
|
||||||
|
def prune_intermediate_layers(
|
||||||
|
self,
|
||||||
|
indices: Union[int, List[int], Tuple[int]] = 1,
|
||||||
|
prune_norm: bool = False,
|
||||||
|
prune_head: bool = True,
|
||||||
|
extra_blocks: bool = False,
|
||||||
|
):
|
||||||
|
""" Prune layers not required for specified intermediates.
|
||||||
|
"""
|
||||||
|
if extra_blocks:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
|
||||||
|
else:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
||||||
|
max_index = self.stage_ends[max_index]
|
||||||
|
self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0
|
||||||
|
if prune_norm or max_index < len(self.blocks):
|
||||||
|
self.conv_head = nn.Identity()
|
||||||
|
self.bn2 = nn.Identity()
|
||||||
|
if prune_head:
|
||||||
|
self.reset_classifier(0, '')
|
||||||
|
return take_indices
|
||||||
|
|
||||||
def forward_features(self, x):
|
def forward_features(self, x):
|
||||||
x = self.conv_stem(x)
|
x = self.conv_stem(x)
|
||||||
x = self.bn1(x)
|
x = self.bn1(x)
|
||||||
@ -272,7 +353,7 @@ def _create_effnet(variant, pretrained=False, **kwargs):
|
|||||||
model_cls = EfficientNet
|
model_cls = EfficientNet
|
||||||
kwargs_filter = None
|
kwargs_filter = None
|
||||||
if kwargs.pop('features_only', False):
|
if kwargs.pop('features_only', False):
|
||||||
if 'feature_cfg' in kwargs:
|
if 'feature_cfg' in kwargs or 'feature_cls' in kwargs:
|
||||||
features_mode = 'cfg'
|
features_mode = 'cfg'
|
||||||
else:
|
else:
|
||||||
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool')
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool')
|
||||||
|
@ -7,7 +7,7 @@ Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
|
|||||||
Hacked together by / Copyright 2019, Ross Wightman
|
Hacked together by / Copyright 2019, Ross Wightman
|
||||||
"""
|
"""
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import Callable, List, Optional, Tuple
|
from typing import Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -20,7 +20,7 @@ from ._builder import build_model_with_cfg, pretrained_cfg_for_features
|
|||||||
from ._efficientnet_blocks import SqueezeExcite
|
from ._efficientnet_blocks import SqueezeExcite
|
||||||
from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
|
from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \
|
||||||
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
|
||||||
from ._features import FeatureInfo, FeatureHooks
|
from ._features import FeatureInfo, FeatureHooks, feature_take_indices
|
||||||
from ._manipulate import checkpoint_seq
|
from ._manipulate import checkpoint_seq
|
||||||
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
||||||
|
|
||||||
@ -109,6 +109,7 @@ class MobileNetV3(nn.Module):
|
|||||||
)
|
)
|
||||||
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
self.blocks = nn.Sequential(*builder(stem_size, block_args))
|
||||||
self.feature_info = builder.features
|
self.feature_info = builder.features
|
||||||
|
self.stage_ends = [f['stage'] for f in self.feature_info]
|
||||||
head_chs = builder.in_chs
|
head_chs = builder.in_chs
|
||||||
|
|
||||||
# Head + Pooling
|
# Head + Pooling
|
||||||
@ -150,6 +151,84 @@ class MobileNetV3(nn.Module):
|
|||||||
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
||||||
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||||
|
|
||||||
|
def forward_intermediates(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
*,
|
||||||
|
indices: Union[int, List[int], Tuple[int]] = None,
|
||||||
|
norm: bool = False,
|
||||||
|
stop_early: bool = False,
|
||||||
|
output_fmt: str = 'NCHW',
|
||||||
|
intermediates_only: bool = False,
|
||||||
|
extra_blocks: bool = False,
|
||||||
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||||
|
""" Forward features that returns intermediates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input image tensor
|
||||||
|
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||||
|
norm: Apply norm layer to compatible intermediates
|
||||||
|
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||||
|
output_fmt: Shape of intermediate feature outputs
|
||||||
|
intermediates_only: Only return intermediate features
|
||||||
|
extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||||
|
if stop_early:
|
||||||
|
assert intermediates_only, 'Must use intermediates_only for early stopping.'
|
||||||
|
intermediates = []
|
||||||
|
if extra_blocks:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
|
||||||
|
else:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
||||||
|
print(take_indices, self.stage_ends)
|
||||||
|
take_indices = [self.stage_ends[i] for i in take_indices]
|
||||||
|
max_index = self.stage_ends[max_index]
|
||||||
|
# forward pass
|
||||||
|
feat_idx = 0 # stem is index 0
|
||||||
|
x = self.conv_stem(x)
|
||||||
|
x = self.bn1(x)
|
||||||
|
if feat_idx in take_indices:
|
||||||
|
intermediates.append(x)
|
||||||
|
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||||
|
blocks = self.blocks
|
||||||
|
else:
|
||||||
|
blocks = self.blocks[:max_index]
|
||||||
|
for blk in blocks:
|
||||||
|
feat_idx += 1
|
||||||
|
x = blk(x)
|
||||||
|
if feat_idx in take_indices:
|
||||||
|
intermediates.append(x)
|
||||||
|
|
||||||
|
if intermediates_only:
|
||||||
|
return intermediates
|
||||||
|
|
||||||
|
return x, intermediates
|
||||||
|
|
||||||
|
def prune_intermediate_layers(
|
||||||
|
self,
|
||||||
|
indices: Union[int, List[int], Tuple[int]] = 1,
|
||||||
|
prune_norm: bool = False,
|
||||||
|
prune_head: bool = True,
|
||||||
|
extra_blocks: bool = False,
|
||||||
|
):
|
||||||
|
""" Prune layers not required for specified intermediates.
|
||||||
|
"""
|
||||||
|
if extra_blocks:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices)
|
||||||
|
else:
|
||||||
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
||||||
|
max_index = self.stage_ends[max_index]
|
||||||
|
self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0
|
||||||
|
if max_index < len(self.blocks):
|
||||||
|
self.conv_head = nn.Identity()
|
||||||
|
if prune_head:
|
||||||
|
self.conv_head = nn.Identity()
|
||||||
|
self.reset_classifier(0, '')
|
||||||
|
return take_indices
|
||||||
|
|
||||||
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
x = self.conv_stem(x)
|
x = self.conv_stem(x)
|
||||||
x = self.bn1(x)
|
x = self.bn1(x)
|
||||||
@ -288,7 +367,7 @@ def _create_mnv3(variant: str, pretrained: bool = False, **kwargs) -> MobileNetV
|
|||||||
model_cls = MobileNetV3
|
model_cls = MobileNetV3
|
||||||
kwargs_filter = None
|
kwargs_filter = None
|
||||||
if kwargs.pop('features_only', False):
|
if kwargs.pop('features_only', False):
|
||||||
if 'feature_cfg' in kwargs:
|
if 'feature_cfg' in kwargs or 'feature_cls' in kwargs:
|
||||||
features_mode = 'cfg'
|
features_mode = 'cfg'
|
||||||
else:
|
else:
|
||||||
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')
|
||||||
|
Loading…
x
Reference in New Issue
Block a user