Add new results csv and update README with 3 new ResNet weight results
parent
3d9be78fc6
commit
d97510fd4a
|
@ -18,8 +18,9 @@ The work of many others is present here. I've tried to make sure all source mate
|
|||
|
||||
I've included a few of my favourite models, but this is not an exhaustive collection. You can't do better than Cadene's collection in that regard. Most models do have pretrained weights from their respective sources or original authors.
|
||||
|
||||
* ResNet/ResNeXt (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models) with ResNeXt mods by myself)
|
||||
* ResNet/ResNeXt (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models) with mods by myself)
|
||||
* ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNeXt50 (32x4d), ResNeXt101 (32x4d and 64x4d)
|
||||
* 'Bag of Tricks' / Gluon C, D, E, S variations (https://arxiv.org/abs/1812.01187)
|
||||
* Instagram trained / ImageNet tuned ResNeXt101-32x8d to 32x48d from from [facebookresearch](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)
|
||||
* DenseNet (from [torchvision](https://github.com/pytorch/vision/tree/master/torchvision/models))
|
||||
* DenseNet-121, DenseNet-169, DenseNet-201, DenseNet-161
|
||||
|
@ -70,12 +71,15 @@ I've leveraged the training scripts in this repository to train a few of the mod
|
|||
#### @ 224x224
|
||||
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling |
|
||||
|---|---|---|---|---|
|
||||
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1M | bicubic |
|
||||
| resnext50_32x4d | 78.512 (21.488) | 94.042 (5.958) | 25M | bicubic |
|
||||
| resnet50 | 78.470 (21.530) | 94.266 (5.734) | 25.6M | bicubic |
|
||||
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic |
|
||||
| efficientnet_b0 | 76.912 (23.088) | 93.210 (6.790) | 5.29M | bicubic |
|
||||
| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16M | bicubic |
|
||||
| mobilenetv3_100 | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic |
|
||||
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89M | bicubic |
|
||||
| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16M | bicubic |
|
||||
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear |
|
||||
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear |
|
||||
| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22M | bilinear |
|
||||
|
@ -120,8 +124,6 @@ I've leveraged the training scripts in this repository to train a few of the mod
|
|||
| tf_efficientnet_b0 *tfp | 76.828 (23.172) | 93.226 (6.774) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
|
||||
| tf_efficientnet_b0 | 76.528 (23.472) | 93.010 (6.990) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
|
||||
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | |
|
||||
| tflite_semnasnet_100 | 73.086 (26.914) | 91.336 (8.664) | 3.87 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |
|
||||
| tflite_mnasnet_100 | 72.398 (27.602) | 90.930 (9.070) | 4.36 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet)
|
||||
| gluon_resnet18_v1b | 70.830 (29.170) | 89.756 (10.244) | 11.69 | bicubic | |
|
||||
|
||||
#### @ 240x240
|
||||
|
|
|
@ -2,8 +2,6 @@ model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
|
|||
resnet18,69.758,30.242,89.078,10.922,11.69,224,0.875,bilinear
|
||||
gluon_resnet18_v1b,70.83,29.17,89.756,10.244,11.69,224,0.875,bicubic
|
||||
seresnet18,71.758,28.242,90.334,9.666,11.78,224,0.875,bicubic
|
||||
tflite_mnasnet_100,72.4,27.6,90.936,9.064,4.36,224,0.875,bicubic
|
||||
tflite_semnasnet_100,73.078,26.922,91.334,8.666,3.87,224,0.875,bicubic
|
||||
tv_resnet34,73.314,26.686,91.42,8.58,21.8,224,0.875,bilinear
|
||||
spnasnet_100,74.08,25.92,91.832,8.168,4.42,224,0.875,bilinear
|
||||
gluon_resnet34_v1b,74.58,25.42,91.988,8.012,21.8,224,0.875,bicubic
|
||||
|
@ -12,12 +10,14 @@ densenet121,74.752,25.248,92.152,7.848,7.98,224,0.875,bicubic
|
|||
seresnet34,74.808,25.192,92.126,7.874,21.96,224,0.875,bilinear
|
||||
resnet34,75.112,24.888,92.288,7.712,21.8,224,0.875,bilinear
|
||||
fbnetc_100,75.12,24.88,92.386,7.614,5.57,224,0.875,bilinear
|
||||
resnet26,75.292,24.708,92.57,7.43,16,224,0.875,bicubic
|
||||
semnasnet_100,75.456,24.544,92.592,7.408,3.89,224,0.875,bicubic
|
||||
mobilenetv3_100,75.628,24.372,92.708,7.292,5.48,224,0.875,bicubic
|
||||
densenet169,75.912,24.088,93.024,6.976,14.15,224,0.875,bicubic
|
||||
tv_resnet50,76.13,23.87,92.862,7.138,25.56,224,0.875,bilinear
|
||||
dpn68,76.306,23.694,92.97,7.03,12.61,224,0.875,bicubic
|
||||
tf_efficientnet_b0,76.528,23.472,93.01,6.99,5.29,224,0.875,bicubic
|
||||
resnet26d,76.68,23.32,93.166,6.834,16.01,224,0.875,bicubic
|
||||
efficientnet_b0,76.914,23.086,93.206,6.794,5.29,224,0.875,bicubic
|
||||
seresnext26_32x4d,77.1,22.9,93.31,6.69,16.79,224,0.875,bicubic
|
||||
densenet201,77.29,22.71,93.478,6.522,20.01,224,0.875,bicubic
|
||||
|
@ -30,7 +30,7 @@ gluon_resnet50_v1b,77.578,22.422,93.718,6.282,25.56,224,0.875,bicubic
|
|||
tv_resnext50_32x4d,77.618,22.382,93.698,6.302,25.03,224,0.875,bilinear
|
||||
seresnet50,77.636,22.364,93.752,6.248,28.09,224,0.875,bilinear
|
||||
tf_inception_v3,77.856,22.144,93.644,6.356,23.83,299,0.875,bicubic
|
||||
gluon_resnet50_v1c,78.01,21.99,93.988,6.012,25.58,224,0.875,bicubic
|
||||
gluon_resnet50_v1c,78.012,21.988,93.988,6.012,25.58,224,0.875,bicubic
|
||||
resnet152,78.312,21.688,94.046,5.954,60.19,224,0.875,bilinear
|
||||
seresnet101,78.396,21.604,94.258,5.742,49.33,224,0.875,bilinear
|
||||
wide_resnet50_2,78.468,21.532,94.086,5.914,68.88,224,0.875,bilinear
|
||||
|
@ -51,6 +51,7 @@ gluon_resnext50_32x4d,79.356,20.644,94.424,5.576,25.03,224,0.875,bicubic
|
|||
gluon_resnet101_v1c,79.544,20.456,94.586,5.414,44.57,224,0.875,bicubic
|
||||
tf_efficientnet_b2,79.606,20.394,94.712,5.288,9.11,260,0.89,bicubic
|
||||
dpn98,79.636,20.364,94.594,5.406,61.57,224,0.875,bicubic
|
||||
resnext50d_32x4d,79.674,20.326,94.868,5.132,25.05,224,0.875,bicubic
|
||||
gluon_resnet152_v1b,79.692,20.308,94.738,5.262,60.19,224,0.875,bicubic
|
||||
efficientnet_b2,79.752,20.248,94.71,5.29,9.11,260,0.89,bicubic
|
||||
dpn131,79.828,20.172,94.704,5.296,79.25,224,0.875,bicubic
|
||||
|
|
|
|
@ -0,0 +1,84 @@
|
|||
model,top1,top1_err,top5,top5_err,param_count,img_size,cropt_pct,interpolation
|
||||
resnet18,57.18,42.82,80.19,19.81,11.69,224,0.875,bilinear
|
||||
gluon_resnet18_v1b,58.32,41.68,80.96,19.04,11.69,224,0.875,bicubic
|
||||
seresnet18,59.81,40.19,81.68,18.32,11.78,224,0.875,bicubic
|
||||
tv_resnet34,61.2,38.8,82.72,17.28,21.8,224,0.875,bilinear
|
||||
spnasnet_100,61.21,38.79,82.77,17.23,4.42,224,0.875,bilinear
|
||||
mnasnet_100,61.91,38.09,83.71,16.29,4.38,224,0.875,bicubic
|
||||
fbnetc_100,62.43,37.57,83.39,16.61,5.57,224,0.875,bilinear
|
||||
gluon_resnet34_v1b,62.56,37.44,84,16,21.8,224,0.875,bicubic
|
||||
resnet34,62.82,37.18,84.12,15.88,21.8,224,0.875,bilinear
|
||||
seresnet34,62.89,37.11,84.22,15.78,21.96,224,0.875,bilinear
|
||||
densenet121,62.94,37.06,84.26,15.74,7.98,224,0.875,bicubic
|
||||
semnasnet_100,63.12,36.88,84.53,15.47,3.89,224,0.875,bicubic
|
||||
mobilenetv3_100,63.23,36.77,84.52,15.48,5.48,224,0.875,bicubic
|
||||
tv_resnet50,63.33,36.67,84.65,15.35,25.56,224,0.875,bilinear
|
||||
resnet26,63.45,36.55,84.27,15.73,16,224,0.875,bicubic
|
||||
tf_efficientnet_b0,63.53,36.47,84.88,15.12,5.29,224,0.875,bicubic
|
||||
dpn68,64.22,35.78,85.18,14.82,12.61,224,0.875,bicubic
|
||||
efficientnet_b0,64.58,35.42,85.89,14.11,5.29,224,0.875,bicubic
|
||||
resnet26d,64.63,35.37,85.12,14.88,16.01,224,0.875,bicubic
|
||||
densenet169,64.78,35.22,85.25,14.75,14.15,224,0.875,bicubic
|
||||
seresnext26_32x4d,65.04,34.96,85.65,14.35,16.79,224,0.875,bicubic
|
||||
densenet201,65.28,34.72,85.67,14.33,20.01,224,0.875,bicubic
|
||||
dpn68b,65.6,34.4,85.94,14.06,12.61,224,0.875,bicubic
|
||||
resnet101,65.68,34.32,85.98,14.02,44.55,224,0.875,bilinear
|
||||
densenet161,65.85,34.15,86.46,13.54,28.68,224,0.875,bicubic
|
||||
gluon_resnet50_v1b,66.04,33.96,86.27,13.73,25.56,224,0.875,bicubic
|
||||
inception_v3,66.12,33.88,86.34,13.66,27.16,299,0.875,bicubic
|
||||
tv_resnext50_32x4d,66.18,33.82,86.04,13.96,25.03,224,0.875,bilinear
|
||||
seresnet50,66.24,33.76,86.33,13.67,28.09,224,0.875,bilinear
|
||||
tf_inception_v3,66.41,33.59,86.68,13.32,23.83,299,0.875,bicubic
|
||||
tf_efficientnet_b1,66.52,33.48,86.68,13.32,7.79,240,0.882,bicubic
|
||||
gluon_resnet50_v1c,66.54,33.46,86.16,13.84,25.58,224,0.875,bicubic
|
||||
adv_inception_v3,66.6,33.4,86.56,13.44,23.83,299,0.875,bicubic
|
||||
wide_resnet50_2,66.65,33.35,86.81,13.19,68.88,224,0.875,bilinear
|
||||
wide_resnet101_2,66.68,33.32,87.04,12.96,126.89,224,0.875,bilinear
|
||||
resnet50,66.81,33.19,87,13,25.56,224,0.875,bicubic
|
||||
resnext50_32x4d,66.88,33.12,86.36,13.64,25.03,224,0.875,bicubic
|
||||
resnet152,67.02,32.98,87.57,12.43,60.19,224,0.875,bilinear
|
||||
gluon_resnet50_v1s,67.1,32.9,86.86,13.14,25.68,224,0.875,bicubic
|
||||
seresnet101,67.15,32.85,87.05,12.95,49.33,224,0.875,bilinear
|
||||
tf_efficientnet_b2,67.4,32.6,87.58,12.42,9.11,260,0.89,bicubic
|
||||
gluon_resnet101_v1b,67.45,32.55,87.23,12.77,44.55,224,0.875,bicubic
|
||||
efficientnet_b1,67.55,32.45,87.29,12.71,7.79,240,0.882,bicubic
|
||||
seresnet152,67.55,32.45,87.39,12.61,66.82,224,0.875,bilinear
|
||||
gluon_resnet101_v1c,67.56,32.44,87.16,12.84,44.57,224,0.875,bicubic
|
||||
gluon_inception_v3,67.59,32.41,87.46,12.54,23.83,299,0.875,bicubic
|
||||
xception,67.67,32.33,87.57,12.43,22.86,299,0.8975,bicubic
|
||||
efficientnet_b2,67.8,32.2,88.2,11.8,9.11,260,0.89,bicubic
|
||||
resnext101_32x8d,67.85,32.15,87.48,12.52,88.79,224,0.875,bilinear
|
||||
seresnext50_32x4d,67.87,32.13,87.62,12.38,27.56,224,0.875,bilinear
|
||||
gluon_resnet50_v1d,67.91,32.09,87.12,12.88,25.58,224,0.875,bicubic
|
||||
dpn92,68.01,31.99,87.59,12.41,37.67,224,0.875,bicubic
|
||||
gluon_resnext50_32x4d,68.28,31.72,87.32,12.68,25.03,224,0.875,bicubic
|
||||
tf_efficientnet_b3,68.52,31.48,88.7,11.3,12.23,300,0.904,bicubic
|
||||
dpn98,68.58,31.42,87.66,12.34,61.57,224,0.875,bicubic
|
||||
gluon_seresnext50_32x4d,68.67,31.33,88.32,11.68,27.56,224,0.875,bicubic
|
||||
dpn107,68.71,31.29,88.13,11.87,86.92,224,0.875,bicubic
|
||||
gluon_resnet101_v1s,68.72,31.28,87.9,12.1,44.67,224,0.875,bicubic
|
||||
resnext50d_32x4d,68.75,31.25,88.31,11.69,25.05,224,0.875,bicubic
|
||||
dpn131,68.76,31.24,87.48,12.52,79.25,224,0.875,bicubic
|
||||
gluon_resnet152_v1b,68.81,31.19,87.71,12.29,60.19,224,0.875,bicubic
|
||||
gluon_resnext101_32x4d,68.96,31.04,88.34,11.66,44.18,224,0.875,bicubic
|
||||
gluon_resnet101_v1d,68.99,31.01,88.08,11.92,44.57,224,0.875,bicubic
|
||||
gluon_resnet152_v1c,69.13,30.87,87.89,12.11,60.21,224,0.875,bicubic
|
||||
seresnext101_32x4d,69.34,30.66,88.05,11.95,48.96,224,0.875,bilinear
|
||||
inception_v4,69.35,30.65,88.78,11.22,42.68,299,0.875,bicubic
|
||||
ens_adv_inception_resnet_v2,69.52,30.48,88.5,11.5,55.84,299,0.8975,bicubic
|
||||
gluon_resnext101_64x4d,69.69,30.31,88.26,11.74,83.46,224,0.875,bicubic
|
||||
gluon_resnet152_v1d,69.95,30.05,88.47,11.53,60.21,224,0.875,bicubic
|
||||
gluon_seresnext101_32x4d,70.01,29.99,88.91,11.09,48.96,224,0.875,bicubic
|
||||
inception_resnet_v2,70.12,29.88,88.68,11.32,55.84,299,0.8975,bicubic
|
||||
gluon_resnet152_v1s,70.32,29.68,88.87,11.13,60.32,224,0.875,bicubic
|
||||
gluon_seresnext101_64x4d,70.44,29.56,89.35,10.65,88.23,224,0.875,bicubic
|
||||
senet154,70.48,29.52,88.99,11.01,115.09,224,0.875,bilinear
|
||||
gluon_senet154,70.6,29.4,88.92,11.08,115.09,224,0.875,bicubic
|
||||
tf_efficientnet_b4,71.34,28.66,90.11,9.89,19.34,380,0.922,bicubic
|
||||
nasnetalarge,72.31,27.69,90.51,9.49,88.75,331,0.875,bicubic
|
||||
pnasnet5large,72.37,27.63,90.26,9.74,86.06,331,0.875,bicubic
|
||||
tf_efficientnet_b5,72.56,27.44,91.1,8.9,30.39,456,0.934,bicubic
|
||||
ig_resnext101_32x8d,73.66,26.34,92.15,7.85,88.79,224,0.875,bilinear
|
||||
ig_resnext101_32x16d,75.71,24.29,92.9,7.1,194.03,224,0.875,bilinear
|
||||
ig_resnext101_32x32d,76.84,23.16,93.19,6.81,468.53,224,0.875,bilinear
|
||||
ig_resnext101_32x48d,76.87,23.13,93.32,6.68,828.41,224,0.875,bilinear
|
|
Loading…
Reference in New Issue