Merge pull request #1900 from huggingface/swin_maxvit_resize

Add support for resizing swin transformer, maxvit, coatnet at creation time
pull/1578/merge
Ross Wightman 2023-08-11 15:05:28 -07:00 committed by GitHub
commit da75cdd212
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 427 additions and 100 deletions

View File

@ -37,7 +37,8 @@ from .patch_dropout import PatchDropout
from .patch_embed import PatchEmbed, PatchEmbedWithSize, resample_patch_embed
from .pool2d_same import AvgPool2dSame, create_pool2d
from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc
from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords
from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords, \
resize_rel_pos_bias_table, resize_rel_pos_bias_table_simple
from .pos_embed_sincos import pixel_freq_bands, freq_bands, build_sincos2d_pos_embed, build_fourier_pos_embed, \
build_rotary_pos_embed, apply_rot_embed, apply_rot_embed_cat, apply_rot_embed_list, apply_keep_indices_nlc, \
FourierEmbed, RotaryEmbedding, RotaryEmbeddingCat

View File

@ -0,0 +1,68 @@
""" Interpolation helpers for timm layers
RegularGridInterpolator from https://github.com/sbarratt/torch_interpolations
Copyright Shane Barratt, Apache 2.0 license
"""
import torch
from itertools import product
class RegularGridInterpolator:
""" Interpolate data defined on a rectilinear grid with even or uneven spacing.
Produces similar results to scipy RegularGridInterpolator or interp2d
in 'linear' mode.
Taken from https://github.com/sbarratt/torch_interpolations
"""
def __init__(self, points, values):
self.points = points
self.values = values
assert isinstance(self.points, tuple) or isinstance(self.points, list)
assert isinstance(self.values, torch.Tensor)
self.ms = list(self.values.shape)
self.n = len(self.points)
assert len(self.ms) == self.n
for i, p in enumerate(self.points):
assert isinstance(p, torch.Tensor)
assert p.shape[0] == self.values.shape[i]
def __call__(self, points_to_interp):
assert self.points is not None
assert self.values is not None
assert len(points_to_interp) == len(self.points)
K = points_to_interp[0].shape[0]
for x in points_to_interp:
assert x.shape[0] == K
idxs = []
dists = []
overalls = []
for p, x in zip(self.points, points_to_interp):
idx_right = torch.bucketize(x, p)
idx_right[idx_right >= p.shape[0]] = p.shape[0] - 1
idx_left = (idx_right - 1).clamp(0, p.shape[0] - 1)
dist_left = x - p[idx_left]
dist_right = p[idx_right] - x
dist_left[dist_left < 0] = 0.
dist_right[dist_right < 0] = 0.
both_zero = (dist_left == 0) & (dist_right == 0)
dist_left[both_zero] = dist_right[both_zero] = 1.
idxs.append((idx_left, idx_right))
dists.append((dist_left, dist_right))
overalls.append(dist_left + dist_right)
numerator = 0.
for indexer in product([0, 1], repeat=self.n):
as_s = [idx[onoff] for onoff, idx in zip(indexer, idxs)]
bs_s = [dist[1 - onoff] for onoff, dist in zip(indexer, dists)]
numerator += self.values[as_s] * \
torch.prod(torch.stack(bs_s), dim=0)
denominator = torch.prod(torch.stack(overalls), dim=0)
return numerator / denominator

View File

@ -3,15 +3,19 @@
Hacked together by / Copyright 2022 Ross Wightman
"""
import math
import os
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from .interpolate import RegularGridInterpolator
from .mlp import Mlp
from .weight_init import trunc_normal_
_USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0
def gen_relative_position_index(
q_size: Tuple[int, int],
@ -20,51 +24,219 @@ def gen_relative_position_index(
) -> torch.Tensor:
# Adapted with significant modifications from Swin / BeiT codebases
# get pair-wise relative position index for each token inside the window
if k_size is None:
coords = torch.stack(
torch.meshgrid([
torch.arange(q_size[0]),
torch.arange(q_size[1])
])
).flatten(1) # 2, Wh, Ww
relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1) + 3
else:
# FIXME different q vs k sizes is a WIP, need to better offset the two grids?
q_coords = torch.stack(
torch.meshgrid([
torch.arange(q_size[0]),
torch.arange(q_size[1])
])
).flatten(1) # 2, Wh, Ww
k_coords = torch.stack(
torch.meshgrid([
torch.arange(k_size[0]),
torch.arange(k_size[1])
])
).flatten(1)
relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
# relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1 # shift to start from 0
# relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1
# relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1
# relative_position_index = relative_coords.sum(-1) # Qh*Qw, Kh*Kw
num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + q_size[1] - 1) + 3
assert k_size is None, 'Different q & k sizes not currently supported' # FIXME
_, relative_position_index = torch.unique(relative_coords.view(-1, 2), return_inverse=True, dim=0)
coords = torch.stack(
torch.meshgrid([
torch.arange(q_size[0]),
torch.arange(q_size[1])
])
).flatten(1) # 2, Wh, Ww
relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
relative_coords[:, :, 0] += q_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += q_size[1] - 1
relative_coords[:, :, 0] *= 2 * q_size[1] - 1
num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1)
# else:
# # FIXME different q vs k sizes is a WIP, need to better offset the two grids?
# q_coords = torch.stack(
# torch.meshgrid([
# torch.arange(q_size[0]),
# torch.arange(q_size[1])
# ])
# ).flatten(1) # 2, Wh, Ww
# k_coords = torch.stack(
# torch.meshgrid([
# torch.arange(k_size[0]),
# torch.arange(k_size[1])
# ])
# ).flatten(1)
# relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww
# relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2
# relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1 # shift to start from 0
# relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1
# relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1
# relative_position_index = relative_coords.sum(-1) # Qh*Qw, Kh*Kw
# num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + k_size[1] - 1) + 3
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
if class_token:
# handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias
# NOTE not intended or tested with MLP log-coords
relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0])
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
relative_position_index[0, 0:] = num_relative_distance
relative_position_index[0:, 0] = num_relative_distance + 1
relative_position_index[0, 0] = num_relative_distance + 2
return relative_position_index.contiguous()
def resize_rel_pos_bias_table_simple(
rel_pos_bias,
new_window_size: Tuple[int, int],
new_bias_shape: Tuple[int, ...],
):
dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
if rel_pos_bias.ndim == 3:
# TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
_, dst_h, dst_w = new_bias_shape
num_attn_heads, src_h, src_w = rel_pos_bias.shape
assert dst_h == dst_size[0] and dst_w == dst_size[1]
if src_h != dst_h or src_w != dst_w:
rel_pos_bias = torch.nn.functional.interpolate(
rel_pos_bias.unsqueeze(0),
size=dst_size,
mode="bicubic",
align_corners=False,
).squeeze(0)
else:
assert rel_pos_bias.ndim == 2
# (num_pos, num_heads) (aka flat) bias shape
dst_num_pos, _ = new_bias_shape
src_num_pos, num_attn_heads = rel_pos_bias.shape
num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
src_size = (src_size, src_size) # FIXME could support non-equal src if argument passed
if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
if num_extra_tokens:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
else:
extra_tokens = None
rel_pos_bias = torch.nn.functional.interpolate(
rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])),
size=dst_size,
mode="bicubic",
align_corners=False,
).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1)
if extra_tokens is not None:
rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
return rel_pos_bias
def resize_rel_pos_bias_table(
rel_pos_bias,
new_window_size: Tuple[int, int],
new_bias_shape: Tuple[int, ...],
):
""" Resize relative position bias table using more advanced interpolation.
Modified from code in Microsoft Unilm (https://github.com/microsoft/unilm) repo (BeiT, BeiT-v2, etc).
https://github.com/microsoft/unilm/blob/5255d52de86dad642810f5849dd357769346c1d7/beit/run_class_finetuning.py#L351
Args:
rel_pos_bias:
new_window_size:
new_bias_shape:
Returns:
"""
if _USE_SCIPY:
from scipy import interpolate
dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1)
if rel_pos_bias.ndim == 3:
# TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported
num_extra_tokens = 0
_, dst_h, dst_w = new_bias_shape
assert dst_h == dst_size[0] and dst_w == dst_size[1]
num_attn_heads, src_h, src_w = rel_pos_bias.shape
src_size = (src_h, src_w)
has_flat_shape = False
else:
assert rel_pos_bias.ndim == 2
# (num_pos, num_heads) (aka flat) bias shape
dst_num_pos, _ = new_bias_shape
src_num_pos, num_attn_heads = rel_pos_bias.shape
num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1])
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
src_size = (src_size, src_size)
has_flat_shape = True
if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]:
# print("Interpolating position from %dx%d to %dx%d" % (src_size[0], src_size[1], dst_size[0], dst_size[1]))
if num_extra_tokens:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
else:
extra_tokens = None
def geometric_progression(a, r, n):
return a * (1.0 - r ** n) / (1.0 - r)
def _calc(src, dst):
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src // 2)
if gp > dst // 2:
right = q
else:
left = q
dis = []
cur = 1
for i in range(src // 2):
dis.append(cur)
cur += q ** (i + 1)
r_ids = [-_ for _ in reversed(dis)]
return r_ids + [0] + dis
y = _calc(src_size[0], dst_size[0])
x = _calc(src_size[1], dst_size[1])
yx = [torch.tensor(y), torch.tensor(x)]
# print("Original positions = %s" % str(x))
ty = dst_size[0] // 2.0
tx = dst_size[1] // 2.0
dy = torch.arange(-ty, ty + 0.1, 1.0)
dx = torch.arange(-tx, tx + 0.1, 1.0)
dyx = torch.meshgrid([dy, dx])
# print("Target positions = %s" % str(dx))
all_rel_pos_bias = []
for i in range(num_attn_heads):
if has_flat_shape:
z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float()
else:
z = rel_pos_bias[i, :, :].float()
if _USE_SCIPY:
# Original beit code uses scipy w/ cubic interpolation
f = interpolate.interp2d(x, y, z.numpy(), kind='cubic')
r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device)
else:
# Without scipy dependency, I've found a reasonably simple impl
# that supports uneven spaced interpolation pts with 'linear' interp.
# Results are comparable to scipy for model accuracy in most cases.
f = RegularGridInterpolator(yx, z)
r = f(dyx).contiguous().to(rel_pos_bias.device)
if has_flat_shape:
r = r.view(-1, 1)
all_rel_pos_bias.append(r)
if has_flat_shape:
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
else:
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0)
if extra_tokens is not None:
assert has_flat_shape
rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
return rel_pos_bias
class RelPosBias(nn.Module):
""" Relative Position Bias
Adapted from Swin-V1 relative position bias impl, modularized.

View File

@ -48,6 +48,8 @@ from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn
from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table
from ._builder import build_model_with_cfg
from ._registry import generate_default_cfgs, register_model
@ -115,7 +117,7 @@ class Attention(nn.Module):
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False)
else:
self.window_size = None
self.relative_position_bias_table = None
@ -504,11 +506,46 @@ default_cfgs = generate_default_cfgs({
})
def _beit_checkpoint_filter_fn(state_dict, model):
if 'module' in state_dict:
# beit v2 didn't strip module
state_dict = state_dict['module']
return checkpoint_filter_fn(state_dict, model)
def _beit_checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True):
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('module', state_dict)
# beit v2 didn't strip module
out_dict = {}
for k, v in state_dict.items():
if 'relative_position_index' in k:
continue
if 'patch_embed.proj.weight' in k:
O, I, H, W = model.patch_embed.proj.weight.shape
if v.shape[-1] != W or v.shape[-2] != H:
v = resample_patch_embed(
v,
(H, W),
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# To resize pos embedding when using model at different size from pretrained weights
num_prefix_tokens = 1
v = resample_abs_pos_embed(
v,
new_size=model.patch_embed.grid_size,
num_prefix_tokens=num_prefix_tokens,
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif k.endswith('relative_position_bias_table'):
m = model.get_submodule(k[:-29])
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]:
v = resize_rel_pos_bias_table(
v,
new_window_size=m.window_size,
new_bias_shape=m.relative_position_bias_table.shape,
)
out_dict[k] = v
return out_dict
def _create_beit(variant, pretrained=False, **kwargs):

View File

@ -48,7 +48,7 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import Mlp, ConvMlp, DropPath, LayerNorm, ClassifierHead, NormMlpClassifierHead
from timm.layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, create_pool2d
from timm.layers import trunc_normal_tf_, to_2tuple, extend_tuple, make_divisible, _assert
from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf, use_fused_attn
from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf, use_fused_attn, resize_rel_pos_bias_table
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import named_apply, checkpoint_seq
@ -186,9 +186,9 @@ class Attention2d(nn.Module):
attn_bias = shared_rel_pos
x = torch.nn.functional.scaled_dot_product_attention(
q.transpose(-1, -2),
k.transpose(-1, -2),
v.transpose(-1, -2),
q.transpose(-1, -2).contiguous(),
k.transpose(-1, -2).contiguous(),
v.transpose(-1, -2).contiguous(),
attn_mask=attn_bias,
dropout_p=self.attn_drop.p,
).transpose(-1, -2).reshape(B, -1, H, W)
@ -1790,6 +1790,15 @@ def checkpoint_filter_fn(state_dict, model: nn.Module):
model_state_dict = model.state_dict()
out_dict = {}
for k, v in state_dict.items():
if k.endswith('relative_position_bias_table'):
m = model.get_submodule(k[:-29])
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]:
v = resize_rel_pos_bias_table(
v,
new_window_size=m.window_size,
new_bias_shape=m.relative_position_bias_table.shape,
)
if k in model_state_dict and v.ndim != model_state_dict[k].ndim and v.numel() == model_state_dict[k].numel():
# adapt between conv2d / linear layers
assert v.ndim in (2, 4)

View File

@ -24,7 +24,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, ClassifierHead, to_2tuple, to_ntuple, trunc_normal_, \
_assert, use_fused_attn
_assert, use_fused_attn, resize_rel_pos_bias_table
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import checkpoint_seq, named_apply
@ -38,23 +38,28 @@ _logger = logging.getLogger(__name__)
_int_or_tuple_2_t = Union[int, Tuple[int, int]]
def window_partition(x, window_size: int):
def window_partition(
x: torch.Tensor,
window_size: Tuple[int, int],
) -> torch.Tensor:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x: (B, H, W, C)
window_size (int): window size
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: (num_windows*B, window_size, window_size, C)
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size: int, H: int, W: int):
def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
@ -66,7 +71,7 @@ def window_reverse(windows, window_size: int, H: int, W: int):
x: (B, H, W, C)
"""
C = windows.shape[-1]
x = windows.view(-1, H // window_size, W // window_size, window_size, window_size, C)
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
@ -124,7 +129,7 @@ class WindowAttention(nn.Module):
self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads))
# get pair-wise relative position index for each token inside the window
self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w))
self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False)
self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
@ -218,14 +223,11 @@ class SwinTransformerBlock(nn.Module):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.window_size = window_size
self.shift_size = shift_size
ws, ss = self._calc_window_shift(window_size, shift_size)
self.window_size: Tuple[int, int] = ws
self.shift_size: Tuple[int, int] = ss
self.window_area = self.window_size[0] * self.window_size[1]
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
@ -237,8 +239,8 @@ class SwinTransformerBlock(nn.Module):
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
@ -246,66 +248,81 @@ class SwinTransformerBlock(nn.Module):
act_layer=act_layer,
drop=proj_drop,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if self.shift_size > 0:
if any(self.shift_size):
# calculate attention mask for SW-MSA
H, W = self.input_resolution
H = math.ceil(H / self.window_size[0]) * self.window_size[0]
W = math.ceil(W / self.window_size[1]) * self.window_size[1]
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
cnt = 0
for h in (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None)):
slice(0, -self.window_size[0]),
slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None)):
for w in (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None)):
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None)):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # num_win, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_area)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
self.register_buffer("attn_mask", attn_mask, persistent=False)
def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
target_window_size = to_2tuple(target_window_size)
target_shift_size = to_2tuple(target_shift_size)
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
return tuple(window_size), tuple(shift_size)
def _attn(self, x):
B, H, W, C = x.shape
_assert(H == self.input_resolution[0], "input feature has wrong size")
_assert(W == self.input_resolution[1], "input feature has wrong size")
shortcut = x
x = self.norm1(x)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
has_shift = any(self.shift_size)
if has_shift:
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
else:
shifted_x = x
# pad for resolution not divisible by window size
pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # num_win*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # num_win*B, window_size*window_size, C
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # num_win*B, window_size*window_size, C
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
shifted_x = shifted_x[:, :H, :W, :].contiguous()
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
if has_shift:
x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
else:
x = shifted_x
return x
# FFN
x = shortcut + self.drop_path(x)
def forward(self, x):
B, H, W, C = x.shape
x = x + self.drop_path1(self._attn(self.norm1(x)))
x = x.reshape(B, -1, C)
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
x = x.reshape(B, H, W, C)
return x
@ -385,6 +402,8 @@ class SwinTransformerStage(nn.Module):
self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution
self.depth = depth
self.grad_checkpointing = False
window_size = to_2tuple(window_size)
shift_size = tuple([w // 2 for w in window_size])
# patch merging layer
if downsample:
@ -405,7 +424,7 @@ class SwinTransformerStage(nn.Module):
num_heads=num_heads,
head_dim=head_dim,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
shift_size=0 if (i % 2 == 0) else shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
@ -499,7 +518,11 @@ class SwinTransformer(nn.Module):
# build layers
head_dim = to_ntuple(self.num_layers)(head_dim)
window_size = to_ntuple(self.num_layers)(window_size)
if not isinstance(window_size, (list, tuple)):
window_size = to_ntuple(self.num_layers)(window_size)
elif len(window_size) == 2:
window_size = (window_size,) * self.num_layers
assert len(window_size) == self.num_layers
mlp_ratio = to_ntuple(self.num_layers)(mlp_ratio)
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
layers = []
@ -598,15 +621,30 @@ class SwinTransformer(nn.Module):
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
old_weights = True
if 'head.fc.weight' in state_dict:
return state_dict
old_weights = False
import re
out_dict = {}
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('state_dict', state_dict)
for k, v in state_dict.items():
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
k = k.replace('head.', 'head.fc.')
if any([n in k for n in ('relative_position_index', 'attn_mask')]):
continue # skip buffers that should not be persistent
if k.endswith('relative_position_bias_table'):
m = model.get_submodule(k[:-29])
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]:
v = resize_rel_pos_bias_table(
v,
new_window_size=m.window_size,
new_bias_shape=m.relative_position_bias_table.shape,
)
if old_weights:
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
k = k.replace('head.', 'head.fc.')
out_dict[k] = v
return out_dict

View File

@ -398,6 +398,8 @@ class SwinTransformerV2Stage(nn.Module):
self.depth = depth
self.output_nchw = output_nchw
self.grad_checkpointing = False
window_size = to_2tuple(window_size)
shift_size = tuple([w // 2 for w in window_size])
# patch merging / downsample layer
if downsample:
@ -413,7 +415,7 @@ class SwinTransformerV2Stage(nn.Module):
input_resolution=self.output_resolution,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
shift_size=0 if (i % 2 == 0) else shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
@ -568,7 +570,7 @@ class SwinTransformerV2(nn.Module):
def no_weight_decay(self):
nod = set()
for n, m in self.named_modules():
if any([kw in n for kw in ("cpb_mlp", "logit_scale", 'relative_position_bias_table')]):
if any([kw in n for kw in ("cpb_mlp", "logit_scale")]):
nod.add(n)
return nod